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Abstract

In this theses we present an approach to language proficiency assessment
for German. We address language proficiency assessment as a classification
problem. Our main focus lies on examining a wide range of features on the
syntactic, lexical and morphological level. We combine features from previ-
ous work on proficiency assessment with proficiency measures from language
acquisition research, and additional indicators from readability assessment.
Our data set consists of 1027 German short essays that were produced dur-
ing German as a second language examinations and rated on the CEFR
scale by humans examiners. We experiment with different machine learning
algorithms and techniques for model optimization, and conduct a number
of experiments that mainly investigate the performance of different feature
combinations.
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1 Introduction

Tools for the automatic evaluation of free text essays, such as the Educational
Testing Service’s e-Rater (Attali and Burstein, 2006) or Pearson’s Intelligent
FEssay Assessor (Landauer et al., 2003), have been an active field of research
over the last decade. They are now increasingly employed in high stakes
examinations. The most striking advantages of automatic assessment over
human raters are speed, lower costs and the reduction of marking inconsis-
tencies.

Automatic language proficiency assessment is a specific case of automatic
essay rating that has recently begun to attract attention within the natural
language processing community. Briscoe et al. (2010) and Yannakoudakis
et al. (2011) automatically graded English as a second or foreign language ex-
aminations (Cambridge First Certificate of English). Vajjala and Loo (2013)
automatically assigned CEFR! proficiency levels to texts written by learners
of Estonian.

Language proficiency assessment and automatic essay grading in general
mainly differ on the marking criteria they employ. Automatic essay rating
systems mainly assign grades based on the content of an essay and some addi-
tional stylistic criteria. Many systems have to be specifically trained for each
separate essay prompt. In contrast, language proficiency assessment treats
an essay mostly as a sample of a student’s language skills. The rating an
essay receives depends mainly on the language mastery it demonstrates. The
marking criteria in previous approaches to automatic proficiency assessment
mainly focused on the linguistic properties of learner texts.

In this theses we present an approach to automatic proficiency assessment
for German. We address language proficiency assessment as a supervised
classification task. We mainly focus on examining a wide range of linguistic
features that seem promising indicators of language proficiency. We combined
features from previous work on proficiency assessment with insights from
research on second language acquisition. Additionally we integrated features
from readability assessment and simplification. Those fields are connected to
proficiency assessment as they study the comprehension side of texts while
proficiency assessment studies the production side.

The empirical basis for our work consists of 1027 German short essays
from German as a foreign language exams that were collected by the MER-
LIN? project (Wisniewski et al., 2011). All essays were graded by human
raters on the scale of the Common European Framework of Reference for

LCommon European Framework of Reference for Languages
2Multilingual Platform for the European Reference Levels: interlanguage Exploration
in Context. German is only one of several languages included in the project.
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Languages (CEFR), which is gradually becoming a European standard in
language assessment. CEFR level can stand for the level of an exam that a
student takes or for the “grade” an essay receives. In this work we will refer
to the first meaning as exam type and the second meaning as either essay
rating level or proficiency level.

We conducted several machine learning experiments with our feature set.
Initially, we developed a five class classifier with all CEFR proficiency levels
(A1-Cl1) as classes. Experiments on five class classification included com-
paring different algorithms for classification and investigating the predictive
power of different feature combinations. Additionally we developed two class
“pass of fail” classifiers for each exam type separately and used cost sensitive
learning for optimizing the results.

In the following section we provide background information on related
work and machine learning, and define the linguistic units that occur through-
out this theses. Section 3 introduces our data set in more detail. Section 4
describes our preprocessing procedure. In section 5 we discuss the linguistic
properties that we used as features for the machine learning experiments,
which are then reported on in section 6. Finally section 7 and 8 summarize
our results and suggest directions for future work.

2 Background

2.1 Related Work

Although there is - to the best of our knowledge - no previous work on profi-
ciency assessment for German, there is research on the automatic grading
of English and Estonian language examinations. Briscoe et al. (2010) and
Yannakoudakis et al. (2011) used machine learning for automatically grading
English as a second language (ESOL) exam scripts. Their experiments were
conducted on a set of scripts from the Cambridge Learner Corpus (CLC), a
text collection that contains transcripts of short essays produced during First
Certificate in English (FCE) exams. The scripts were written in response to
a free text prompt.

Briscoe et al. (2010) and Yannakoudakis et al. (2011) deployed several fea-
tures that mirror linguistic skill such as lexical unigrams and bigrams, part of
speech unigrams, bigrams and trigrams, parse rule names, script length and
a corpus derived error rate. Yannakoudakis et al. (2011) added grammatical
relation (GR) distance measures to this feature set. In both approaches, the
RASP system Briscoe et al. (2006) was used for linguistic markup. For deter-
mining scores based on their feature set, Briscoe et al. (2010) experimented



with several supervised machine learning techniques such as Support Vector
Machine, Time Aggregated Perceptron and Discriminative Preference Rank-
ing. Yannakoudakis et al. (2011) compared Rank Preference Models with
Regression Models.

In addition to the features that capture linguistic properties of the text,
Briscoe et al. (2010) included Incremental Semantic Analysis (ISA). ISA is
a non prompt-specific approximation to content analysis and was added pri-
marily to make the system less vulnerable to score manipulations through su-
perficial text properties like script length. Yannakoudakis et al. (2011) tested
their system’s vulnerability to subversion by manipulating exam scripts them-
selves: they swapped words that have the same part-of-speech within a sen-
tence and randomly reordered word unigrams, bigrams and trigrams within
a sentence. Additionally, they scrambled the order of sentences within a
script. The modified scripts were then assessed by a human examiner and the
computer system, and the correlations between the scores were calculated.
Except for modifications that included the reordering of entire sentences,
the correlations were still good. However the system generally tended to
administer higher scores to modified scripts than the human examiner. Yan-
nakoudakis et al. (2011) pointed out that very creative ‘outlier’ essays, that
use stylistic devices, might be rated worse by the system than by a human
examiner.

Vajjala and Loo (2013) predicted the proficiency of learners of Estonian
based on morpho-syntactic and lexical indicators. Their feature set com-
prised nominal and adjectival case information as well as verbal tense, mood,
voice, number and person. Additionally part-of-speech ratios, several lexi-
cal variation measures from SLA, and text length were included. Sequential
Minimal Optimization Algorithm was used for classification. Vajjala and Loo
(2013) conducted experiments with various feature combinations, feature se-
lection and more sophisticated machine learning techniques like ensemble
classifiers and multi-stage cascading classifiers.

For the sake of completeness it should be mentioned that automatic as-
sessment has not only been attempted for written but also for spoken lan-
guage. Automatic language proficiency assessment for spoken lan-
guage is quite different from the assessment of written productions in a
number of ways. Speech recognizers have to be used to process the spo-
ken data. Also, the grading criteria are different. Scores are mostly based
on qualities such as fluency, intelligibility and overall pronunciation quality
(de Wet et al., 2007).

Bernstein et al. (2000) tried to place learners’ spoken responses to prompts
on a functional communication scale that is compatible with the Council of



Europe Framework. Content scores were calculated based on correct words.
Manner scores were based on pronunciation and fluency. de Wet et al. (2007)
assessed fluency based on the rate of speech. While there is hardly any over-
lap in the features and techniques used in written versus oral proficiency
assessment yet, it is thinkable that in the future, criteria from written as-
sessment could be incorporated into spoken language assessment.

In contrast to marking SLA exams, where the marking criteria put a
strong emphasis on the linguistic quality of the scripts (Briscoe et al., 2010),
Automated Essay Scoring (AES) in general is concerned with marking
essays on the basis of their style, grammar, organization and often on their
relevance to the given task. It is an umbrella term for software that scores
written prose (Dikli, 2006). There are several, mostly commercial systems for
AES, some of which are deployed to assess high-stakes examination scripts.

One of the earliest system was Project Essay Grade (PEG) ((Page, 2003),
c.f. Dikli (2006)). It deployed a number of mostly shallow features that ap-
proximate properties of well written essays such as fluency, diction, grammar
and punctuation (Dikli, 2006). Based on these features PEG used linear
regression to first train a model based on pre-examined essays. This model
was used to score unrated essays (Yannakoudakis et al., 2011). PEG was
criticized for not taking into account the content and organization of the
essays. The absence of such features made it easier to trick the system, since
superficial features like word and script length can easily be manipulated
(Yannakoudakis et al., 2011).

E-Rater (Attali and Burstein, 2006) examines an essay at different lev-
els such as grammar, style, topic similarity and organization. Each text is
represented as a weighted vector of those features (Dikli, 2006). Scores are as-
signed based on the cosine similarity between the vectors of marked training
scripts and unmarked scripts (Dikli, 2006). E-Rater also measures relevance
to the prompt. This enables the tool to take into account the content of an
essay and makes it less vulnerable to score manipulation. The disadvantage
is that E-Rater needs to be trained specifically for each prompt.

Intelligent Essay Assessor (IEA) (Landauer et al., 2003) focuses on con-
tent analysis based on Latent Semantic Analysis (LSA) (Landauer and Foltz,
1998). Additionally it takes into account grammar and style (Dikli, 2006).
The systems needs to be trained on prompt specific texts, and scores are
assigned on the basis of similarity between training essays an the essays that
should be rated (Dikli, 2006).

The Bayesian Essay Test Scoring System (BETSY) (Rudner and Liang,
2002) approaches AES as a text classification problem. BETSY uses features
representing content and style such as the number of words, sentences, verbs,



and commas, and certain content word frequencies to train Bernoulli Naive
Bayes models (Dikli, 2006; Yannakoudakis et al., 2011).
More comprehensive surveys of AES systems are offered by Williamson

(2009) and Dikli (2006).

As a tool that measures text complexity, Coh Metriz (Graesser
et al., 2004) is relevant for this work although it is neither an AES system,
nor a tool for grading second language productions. As indicators of text
complexity it deploys about 200 measures of cohesion, linguistic complexity,
and readability with an emphasis on cognitively grounded features. The
tool outputs the scores for different components of complexity such as lexis,
syntax and coherence. However it does not attempt to assign a holistic score
on a grading scale. In principle Coh-Metriz can be applied for examining the
readability of a text as well as for examining a learner text.

Second Language Acquisition (SLA) Studies examine how humans
learn languages that are not their native language. Particularly interest-
ing for this work are SLA studies that are linked to language testing or the
characterization of proficiency levels. The Second Language Acquisition €&
Testing in Europe (SLATE) network connects a number of such projects
that are quite similar to MERLIN in purpose. To name just one example,
the English Profile (http://www.slate.eu.org/projects.htm#proj2) aims at
offering a more detailed reference for each CEFR level for English. This in-
cludes descriptions of the learners’ capabilities at different linguistic levels.
The project combines corpus linguistics, pedagogy and assessment (Cam-
bridge ESOL)3.

Additionally this work was informed by several studies that take a com-
putational approach to the examination of language development. Lu (2010)
and Biber et al. (2011) automatically extracted and examined specific syn-
tactic constructions as measures of L2 development. Lu (2012) investigated
lexical richness measures such as Type-Token Ratio and Lexical Density as
indicators of the lexical development of language learners. Crossley et al.
(2011b) closely analyzed several lexical scores used in Coh-Metriz and mea-
sured how well they correlated with human assessment of lexical proficiency.

Readability assessment is relevant to this work because it tries to de-
tect a text’s reading level based on its linguistic and sometimes also concep-
tional and cognitive complexity. Therefore, features that are good indicators
for reading level might also be good features for language proficiency as-

3Briscoe et al. (2010)’s study was conducted at Cambridge ESOL. The connection is
not mentioned explicitly though.



sessment. Recent approaches to readability assessment were mostly bases
on statistical natural language processing techniques. Unigram models were
deployed for readability classification by Si and Callan (2001) and Collins-
Thompson and Callan (2004). Heilman et al. (2007, 2008) added grammatical
features to this approach. Schwarm and Ostendorf (2005), Petersen and Os-
tendorf (2009) and Feng (2010) trained models for readability classification
on the Weekly Reader, an educational newspaper consisting of articles at four
reading levels. They combined traditional features like sentence length and
word length with syntactic parse tree features and ngram language models.
Feng (2010) additionally deployed discourse features. Vajjala and Meurers
(2012) combined features from previous work on readability assessment with
lexical diversity measures and parse tree based syntactic measures from re-
search on second language learning.

While the work mentioned above has been conducted on English, there
are also approaches that examine readability assessment for other languages.
Dell’Orletta et al. (2011) used a mixture of traditional, morpho-syntactic,
lexical and syntactic features for building a two class readability model for
Italian. Francois and Fairon (2012) built a French readability classifier de-
ploying verb tense and mood along with several other features. DeLite read-
ability checker (Vor der Briick and Hartrumpf, 2007; Vor der Briick et al.,
2008) is a tool for assessing the readability of German texts that makes use
of syntactic, lexical, semantic, discourse and morphological features. How-
ever, it is based on a relatively small human annotated corpus of 500 texts
that are all at a relatively high reading level. Hancke et al. (2012) com-
bined syntactic, lexical and language model features from previous work on
readability assessment on English texts with German specific morphological
features. Their two-class readability classifier was trained and tested on a
corpus collected from publicly accessible websites for children and adults.

2.2 Machine Learning
Tom Mitchell (Mitchell, 1997) defined machine learning as follows:

” A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.”
We approach automatic proficiency level assessment as a supervised learning
task. Labeled data is used to train models, from which the correct classes of
unlabeled data can be predicted. More specifically, as our class labels are on
a discrete scale, we use classification. There are five classes corresponding
to the CEFR levels A1-C1. If one transformed the labels A1-C1 into the
numbers 1-5 one could also apply regression. However we think classification



is better suited as 1-5 are still discrete values.
Throughout this work, WEKA machine learning toolkit (Hall et al., 2009)
was used. It offers implementations of various machine learning algorithms.

2.2.1 Algorithms for Machine Learning

This section briefly introduces the machine learning algorithms that were
used in this work. Naive Bayes classifier is a probabilistic learner. It op-
erates on the simplifying assumption that all features are equally important
and independent of each other. Predictions are based on Bayes rule of con-
ditional probability :

P(E;|H;)P(H;)
P(Ej) o

The conditional probabilities of a piece of evidence (E) given a certain
hypothesis (H) are multiplied with each other and with the likelihood of the
hypothesis (prior probability). This product is divided by the prior probabil-
ity of the evidence. The outcome indicates the likelihood of the hypothesis
(H) given the evidence (E) (Witten and Frank, 2005). Naive Bayes is easy
to interpret and is reported to perform well on many data sets. However it
is sensitive to redundancy in the data set (Witten and Frank, 2005).

Decision Trees are a recursive, top-down, divide and conquer approach
to classification. The data set is split into subsets by selecting one feature
as the root node, making one branch for every possible value of the feature.
To decide which node to split on, the amount of information (in terms of
entropy) is used, that would be needed to decide on the class of the instances
at this node. The information of a node is influenced by the number of
instances that reach the node and by the homogeneity of their classes (Witten
and Frank, 2005). While decision trees work most naturally with nominal
features (Witten and Frank, 2005), they have been extended to also work
with numeric data. There are several different brands of decision trees. In
this work we use J48, which is the WEKA implementation of the popular
C.45 decision tree algorithm developed by Ross Quinlan (Witten and Frank,
2005).

Sequential Minimal Optimization Algorithm (SMO) is an effective
algorithm for training a Support Vector Machine (Witten and Frank, 2005).
Support Vector Machines are an extension of linear models. To find the
optimal decision boundary, they fit a hyperplane into the feature space, such
that it separates the data points belonging to different classes with the largest
possible margin. As hyperplanes can only linearly separate the data, Support
Vector Machines map the feature vectors into higher dimensional space using

P(H;|E;) =
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kernel functions*. This mathematical trick enables them to handle non-linear
problems with linear models (Witten and Frank, 2005). Support Vector
Machines have many advantages. Different kernel functions provide a high
degree of flexibility. Support Vector machines are not very sensitive to over-
fitting, since the large margin hyperplane provides stability (Witten and
Frank, 2005).

2.2.2 Evaluation

For a faithful estimate of a machine learner’s performance, models should
be tested on previously unseen data (Witten and Frank, 2005). It is com-
mon practice to split the data into a separate training and test set (holdout
estimation). An alternative is cross validation. The training data is ran-
domly shuffled and equally split into n folds. In stratified cross validation
the data is sampled such that the class distribution is retained (Witten and
Frank, 2005). Successively, one part is left aside while the model is trained
on the other n — 1 parts and then evaluated on the part that has been left
out. The results are averaged over all n iterations (Baayen, 2008). It is com-
mon to set n = 10, because it has been empirically shown to be a plausible
choice for most data sets and learning methods (Witten and Frank, 2005).
Cross validation has the advantage, that it uses the data more economically
since no test set has to be split off. The fact that it tests the performance on
several different partitions, makes it more representative than a single test
set. We will use stratified cross validation throughout, and whenever cross
validation is mentioned, stratified cross validation is meant.

In cases where there is very little data, leave-one-out testing can be
useful. This is a special case of cross validation where n equals the total
number of instances in the training set. It is a deterministic procedure since
no sampling is involved and it allows the most efficient use of small data
sets (Witten and Frank, 2005). However it is computationally expensive and
stratification is not possible: the correct proportion of classes in the test set
cannot be maintained.

Classification results are presented in accuracy and F-measure. Ac-
curacy reports how many percent of the samples were classified correctly.
F-measure represents the trade-off between precision and recall. Precision
captures the portion of samples that were correctly classified as a target
class. Recall measures the total portion of samples that were classified as a

4Kernel functions are basically similarity functions. They are used to efficiently handle
the mapping of the feature space into higher dimensions. For basic information on kernels
used with SMO see Witten and Frank (2005), for a detailed discussion of kernels in general
see Scholkopf and Smola (2003)
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target class (Manning and Schiitze, 1999).

2.3 Defining Linguistic Units

Most features used for proficiency classification in this work will be based
on linguistic units. Word class definitions follow the Stuttgart Tiubingen
Tagset. Frequently several tags were combined into more general classes for
the implementation. A comprehensive listing can be seen in Table 1. A
point worth considering is the definition of ‘content word’, which we will also
refer to as ‘lexical token’. In German there is no clear consensus on whether
modals are auxiliaries and should be counted as lexical vs. functional units
(see Reis (2001) for a discussion). In this work modals are considered to be
‘content words’ following Reis (2001).

Unit Definition

lexical token/‘content word’
(incl. modals)

ADJA, ADJD, ADV, FM, XY, NN, NE,
VVFIN, VVIMP, VVINF, VVIZU, VVPP,
VMFIN, VMINF, VMPP

lexical token/ ‘content word’
(excl. modals)

ADJA, ADJD, ADV, FM, XY, NN, NE,
VVFIN, VVIMP, VVINF, VVIZU, VVPP

verb

VVFIN, VVIMP, VVINF, VVIZU, VVPP,
VAFIN, VAIMP, VAINF, VAPP, VMFIN,
VMINF, VMPP

lexical verb (incl. modals)

VVFIN, VVIMP, VVINF, VVIZU, VVPP,
VMFIN, VMINF, VMPP

lexical verb (excl. modals)

VVFIN, VVIMP, VVINF, VVIZU, VVPP

finite verb VVFIN, VVIMP, VAFIN, VAFIN,
VMFIN

noun NN, NE

adjective ADJA, ADJD

adverb ADV

conjunction KOUI, KOUS, KON

wh-Word PWS, PWAT, PWAV

preposition APPR, APPRART, APPO, APZR

modifier ADJA, ADJD, ADV

Table 1: Unit definitions on the level of lexical units according to the Stuttgart
Tibingen Tagset tags.

Sentence is a common concept, but in fact it is very hard to find a scientific

definition that describes it adequately. As Grewendorf et al. (1989) point out,
there is no consensus among linguists. Definitions of sentence often include
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several linguistic levels. Gallmann and Sitta (2004) define sentence on three
levels: orthographic/phonetic, syntactic and semantic/pragmatic:

Satze sind sprachliche Einheiten, die durch die folgenden Merkmale bes-
timmt sind: [Sentences are linguistic units that are defined by the following
characteristics:]

1. Sie weisen einen bestimmten grammatischen Bau auf. [They have a
specific grammatical structure.]

2. Sie sind durch die Stimmfiihrung (in der geschriebenen Sprache: durch
die Satzzeichen) als abgeschlossen gekennzeichnet. [They are marked
as self-contained by prosody (in the written language: by punctuation)]

3. Sie sind inhaltliche - relativ - abgeschlossen. [They are - relatively-
self-contained regarding their meaning]
(Gallmann and Sitta, 2004)

For the implementation a more concrete definition is needed: a sentence is
a unit that is delimited by one of the following sentence final punctuation
marks: ./?

Unit Definition

sentence ROOT

clause S + ’satzwertige Infnitive’
coordinated clause CS

dependent clause w.

@S
subord. conj. ¢

[ <1 KOUS|KOUI|PRELAT|PRELS|PRELS-SB
| PRELS-0A | PRELS-DA | PWAT | PWS | PWAV]

| [< (GNP < PRELAT|PRELS|PRELS-SB|
PRELS-0A | PRELS-DA |PWAT | PWS|PWAV) ])
>> S|CS|IDL & !> CS

lative cl
relative clause (0s

[ <1 PRELAT|PRELS|PRELS-SB|PRELS-0A|PRELS-DA]
| [< (@NP < PRELAT|PRELS|PRELS-SB|PRELS-0A

| PRELS-DA | PWAT | PWS |PWAV) ]

| [< (@AP < PRELAT|PRELS|PRELS-SB|PRELS-0A

| PRELS-DA |PWAT |PWS |PWAV) ] )

>> S|CSIDL & !> CS

Table 2: Definitions of Syntactic Units Part 1.

Clauses for English are characterized as structures that contain a subject
and a finite verb (Hunt, 1965). Different from English, German allows sub-
jectless sentences, so all maximal projections headed by a finite verb, as well

13



as elliptical constructions, where the finite verb is omitted, are considered as
clauses.

Dependent clauses are embedded clauses. They fulfill a grammatical func-
tion in the clause that they are embedded in (see (Gallmann and Sitta,
2004, 120-133) for a detailed description). Dependent clauses can be further
grouped into:

1. Relative Clauses
Das ist das Paper, das ich lesen sollte. [That is the paper that I should
read.]

2. Interrogative Clauses
Er fragt, ob er das Paper lesen soll. [He asks whether he should read
the paper.]

3. Conjunctional Clauses
Sein Kollege sagt, dass er das Paper lesen soll. [His colleague says that
he should read the paper.]

While many dependent clauses are headed by a subordinating conjunction or
a pronoun there are also dependent clauses without such markers (Er sagt,
er hat keine Zeit. [He says he does not have the time.]). Additionally there
are “satzwertige Infinitive” - infinite clauses that have the same function as
a dependent clause (Gallmann and Sitta, 2004; Bech, 1955; Meurers, 2000)
(Peter besucht einen Kurs, um Deutsch zu lernen. [Peter attends a course
to learn German.]).

T-Units are defined as “one main clause plus any subordinate clause or
non clausal structure that is attached to or embedded in it” (Hunt 1970, p. 4;
cf. Lu, 2010). Only independent clauses (including their dependents) count
as a T-Unit.

At the phrasal level, coordinated phrases are defined as coordinated ad-
jective, adverb, noun, and verb phrases. Verb phrases include non-finite as
well as finite verb phrases. Finally, complex nominals are nouns with an
adjective, possessive or prepositional phrase, relative clause, participle, or
appositive. Nominal clauses, gerunds and infinitives in subject position are
also included.

For the implementation these definitions had to be operationalized. We
used TregEx (Levy and Andrew, 2006) to search parse trees with regular
expressions. The tags in the operational definitions follow the NEGRA an-
notation scheme (Skut et al., 1997). Table 2 and Table 3 show the explicit
definitions for all constructions that we extracted from parse trees, except
for straightforward mappings such as: verb phrase - VP.

14



Unit

Definition

interrogative clause

(@s

[ <1 PWAT|PWS|PWAV]

| [< (@AP < PWAT|PWS|PWAV) ]

| [< (GNP < PWAT|PWS|PWAV) ] )
>> S|CSIDL & !> CS

conjunctional clause

(@s
[ <1 KOUS|KOUI] )
>> S|CSIDL & !> CS

dependent clause wo.

subord. conj.

(@S
[<1 (VVFIN|VAFIN|VMFIN <<, '/\\?/)]1 . /.,/
| [<1 (@NP . VVFIN|VAFIN|VMFIN )] , /,/ )

> S|CSIDL & !> CS

‘satzwertige Infnitive’

QP [<VZ, /, /] | [kVvZ . /,/]

dependent clause

dependent clause w. subord. conj
+ dependent clause wo. subord. conj
+ ’satzwertige Infnitive’

T-Unit

clause that is not (but may contain) a dependent
clause

complex T-Unit

T-Unit that contains dependent clause

coordinated Phrase

CAC|CAVP|CNP|CVP

complex nominal

@NP|NN|NE < S | < QAP
| < @PP | < @PP | < ADJA|ORD

Table 3: Definitions of Syntactic Units Part II.
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3 Data

?Gliickwunsch zur deine prifung, Ich bin schietoll fir dich, fir mir, get mir gut
und Ich finde sehr gut dass deine tante und onkel besucht in Istanbul hat, und
was Ich wiische in istanbul ist dass eine Mitze, Miitze finde ich schén.”

Figure 1: Example for a text passage with spurious punctuation and spelling
mistakes from an essay in the MERLIN corpus.

The data used in this theses consists of 1027 German essays from the
MERLIN corpus®. MERLIN is a multilingual European project that aims
at “creating a freely accessible multilingual online platform for the illustration
of CEFR levels” (Wisniewski et al., 2011, 35). The texts were produced by
language learners of different native language backgrounds during German as
a second or foreign language exams. The learners were asked to write a short
free text for a certain task®, for example writing a letter to a friend or writing
a fake job application. There were three different tasks per exam type. All
essays were labeled with CEFR proficiency levels by trained human raters.
The CEFR levels comprise six proficiency levels that are mainly defined on
a functional scale: Al (Breakthrough), A2 (Waystage), B1 (Threshold), B2
(Vantage), C1 (Effective Operational Proficiency), C2 (Mastery). Level C2
was not represented in our data set.

In the course of the MERLIN project, the learner essays were digitalized
and stored using the Paula XML annotation scheme (Wisniewski et al., 2011).
The annotation of the data is still in progress. We used a plain text version
of the original essays’.

There are roughly 200 texts for each exam type. However, it is the essay
rating level or proficiency level that reflects the actual language mastery
demonstrated in an essay. The distribution among essay rating levels is not
even. There are only 57 texts that received the rating A1 and only 75 that
were rated with C1. Figure 2 shows the distribution of texts across the essay
rating levels. As a first superficial statistical analysis of the data showed,
there is a high correlation between exam type and text length (r = 0.86) and
essay rating level and text length (r = 0.84). This is illustrated in Figure 3
and Figure 4. As a result much less data is available for the low essay rating
levels, especially for A1.

®German is just one of several European languages included in MERLIN

6Information on the task was gathered from email correspondence with Detmar Meurers
and Serhiy Bykh

"Thanks to Serhiy Bykh and Adriane Boyd for making the plain text version available
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Num. Texts Per Essay Rating Level

300
|

200 250
| |

150
|

Al A2 Bl B2 C1

Figure 2: Number of essays per essay rating level.

The dataset poses several challenges. The skewed distribution of data
across the essay rating levels can complicate machine learning. There are
various possible factors that could also influence classification: different text
lengths, different L1 backgrounds and different tasks for essay writing.

Additionally the data is very noisy compared to ‘standard’ written lan-
guage such as newswire. Although nonstandard language use and mistakes
can be utilized for classifying learner language, they first and foremost pose
a challenge. Passages like the one shown in Figure 1 are not uncommon in
the MERLIN data. Punctuation is often spurious. Spelling and word order
mistakes are frequent. This is problematic for NLP-Tools. Figure 5 shows
the parse tree of the above text passage. Some words were tagged with the
wrong part-of-speech. More strikingly, the whole passage was analyzed as a
single sentence because there is only one sentence final punctuation mark.
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Length in Words dep. on Essay Rating Level grouped by Exam Type
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Figure 3: Text length in words depending on essay rating level grouped by
exam type.

4 Preprocessing

4.1 Components of the Preprocessing Pipeline

We used a plain text version of the 1027 German original learner texts from
the MERLIN corpus. Due to the nature of the essay writing tasks, some
texts contained letterheads. The letterheads were tagged in the plain text
version. For the analysis they were removed as they don’t contribute to the
proficiency analysis and are problematic for some tools, such as sentence
detectors and parsers.

18



Length in Words dep. on Exam Type grouped by Essay Rating Level
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Figure 4: Text length in words depending on exam type grouped by essay
rating level.

The spurious punctuation in some of the MERLIN essays prompted us to
build a tool for missing sentence boundary detection. Although the results
were promising, the tool was not reliable enough to be used in this work. Still,
the approach is discussed in Section 4.2 and might be further developed in
the future. For now, the OpenNLP® SentenceDetectorME (OpenNLP Tools
1.5) was used for sentence segmentation. A pre-trained model for German is
available at OpenNLP. A number of problems occurred when using the tool
on our data.

8http://opennlp.apache.org/
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ROOT

NP PP VAFINist 5.8..
NNGlickwunsch PP APPRin AD)Distanbul KOUSdass NP-SB VVFINfinde NP-SB AD)Dschén
% APPRARTzur CNP ARTeine NNMitze $,, NNMitze PPERich
NP

PPOSATdeine NNprifung $.. CS

S S, s KONund s cs
NP-SB  VAFINbin AP PP S,, VVFINget NP-SB ADJDgut NP-SB VVFINfinde AP KOUSdass NP KONund 5 S, KONund S
PPERIch AD)Dschietoll PP APPRfiir PPERmIr PPERmMIr PPERIch ADVsehr AD)Dgut CNP VP_VAFINhat NP NP-OA VVFINwische
APPRfur PPERdich NP ADJDonkel VVPPbesucht PP PWSwas PPERIch
PPOSATdeine CNP APPRin NEIstanbul
NP
AP
ADJAtante

Figure 5: Example for a parsed text passage with spurious punctuation and
several spelling mistakes from an essay in the MERLIN corpus. Visualized
with ProD (Culy et al., 2012)
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1. If there were several sentence final punctuation marks, the sentences
were not split.

2. Abbreviations were often not handled correctly.

1. was addressed by finding all instances of multiple sentence final punctu-
ation marks using the regular expression [!'?\\.]{2,} and replacing them
by a single full stop. For handling 2. a custom model was created for Sen-
tenceDetectorME. OpenNLP offers a command line interface for sentence
detector training”. In addition to custom training data it is possible to spec-
ify a list of abbreviations for improving the tool’s performance. For that
purpose a list of German abbreviations was mined from the web!®. Sen-
tenceDetectorME was then trained on NEGRA 2 Corpus Export!! and the
additional abbreviation list.

For tokenization OpenNLP TokenizerME (OpenNLP Tools 1.5) was used.
The model was trained on the same data and abbreviation list as the sentence
detector to maintain compatibility.

To reduce problems caused by spelling errors, a Java API for Google Spell
Check (version 1.1)'? was used. When submitting a word or text for spell
correction, the language can be chosen'®>. When sending a request, multiple
corrected suggestions are returned for each misspelled word, ranked according
to the spell checker’s confidence. The suggestion with the highest confidence
was picked.

The spell corrected data was tagged using a Java interface (version 0.0.8)
to the RFTagger (Schmid and Laws, 2008), a statistical tagger that provides
a fine grained morphological analysis. As some of the further processing steps
relied on Stuttgart-Tibingen Tagset, all tags were additionally converted to
this tagset, using the converter class that is integrated into the Java interface.

RFTagger lemmatizes words with a Perl script that looks up lemmas in
a lexicon. This capability, however, is not included in the Java interface for
RFTagger. An attempt to use the scripts for lemmatization separately made
the application extremely slow. Therefore we eventually used TreeTagger

“http://opennlp.apache.org/documentation/1.5.2-incubating/manual/
opennlp.html#tools.sentdetect.detection

Onhttp://german.about.com/library/blabbrev.htm

Hhttp://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
negra-corpus.html

12https://code.google.com/p/google-api-spelling-java/

3There were some encoding issues, when using German. The Java encoding must be
set to UTF-8, however, the correction suggestions for German are returned ISO-8859-1
encoded, so they have to be coded to UTF-8 again. Also, the rate of making requests has
to be reduced in order to not be blocked by Google.

Yhttp://www.sfs.uni-tuebingen.de/~nott/rftj-public/
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(Schmid, 1995) with a Java wrapper by Richard Eckart de Castilho!'® for
lemmatization. The problem with this approach is that Tree Tagger and RF-
Tagger don’t necessarily assign the equivalent part-of-speech tag to a word.
However, after supervising this potential problem during a preprocessing run,
it turned out that the differences were minimal.

All documents were parsed with the Stanford Parser for German, a lex-
icalized probabilistic context free grammar parser. We used the standard
model for German (version 2.0.4) (Rafferty and Manning, 2008) trained on
the NEGRA Corpus'®. As we wanted to experiment with dependency based
features as well, all documents were additionally parsed with MATE depen-
dency parser (Bohnet, 2010), using the standard model for German (Seeker
and Kuhn, 2012), which was trained on the TIGER Corpus.

For storing annotated documents, the serializable class AnnotatedDocument
was implemented. The advantage is that all annotation layers can be stored
and accessed in a principle way.

4.2 Sentence Boundary Detection for Essays with Miss-
ing or Spurious Punctuation

Most conventional approaches address sentence segmentation as a problem
of punctuation disambiguation. Machine learners are trained with features
such as part-of-speech frequency (Palmer and Hearst, 1997) and lexical in-
formation (Reynar and Ratnaparkhi, 1997) in the context of the candidate
punctuation mark and obtain high accuracies (98%, (Reynar and Ratna-
parkhi, 1997)). Since sentence final punctuation is sometimes spurious in the
MERLIN essays, those tools do not work reliably. It would be most desir-
able to find a solution to sentence boundary detection that does not rely on
punctuation.

4.2.1 Survey

Finding sentence boundaries in the absence of punctuation is also a relevant
task in speech recognition. Many approaches (Stolcke and Shriberg, 1996;
Gotoh and Renals, 2000; Liu et al., 2004) use a special type of ngram model
introduced by Stolcke and Shriberg (1996). To incorporate sentence bound-
ary probabilities into ngram models, Stolcke and Shriberg (1996) postulated
a possible sentence boundary tag after each word. Hidden event models
were trained with these ngrams to find the most likely positions for sentence

5http://code.google.com/p/tt4j/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
negra-corpus.html
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boundaries. Later approaches often combined this technique with prosodic
information (Liu et al., 2004; Liu et al.; Favre et al., 2008). Favre et al.
(2008) tried to include syntactic clues by using parser probabilities of text
spans.

After reviewing approaches to sentence boundary detection, that were
used in speech recognition, it seems doubtful that the same techniques could
be applied to our data without much adjustment. There is no prosodic
information in the written texts that could enhance the performance of the
hidden event ngram models. Also, in contrast to the transcript of a speech
recognizer, the learner essays mostly do contain some punctuation marks.
As a first step, the passages where punctuation is missing would have to be
identified.

Nagata et al. (2010) describe an approach to detecting missing sentence
boundaries in texts produced by Japanese learners of English. They put
forward a method for automatically generating training data for missing sen-
tence boundary detection and then used this data to train Support Vector
Machines with features like sentence length probability, number of words be-
ginning with a capital letter, number of verbs, prepositions, wh-words, con-
junctions, and frequencies of non-sentence final punctuation marks. Their
best model achieved promising result (0.716 % F-measure).

We conclude that implementing a component for placing missing punc-
tuation marks in the absence of punctuation is not feasible in this thesis.
Nevertheless we attempted the first step by trying to automatically identify
missing sentence boundaries using a similar approach as Nagata et al. (2010).
Such a tool would be useful to flag essays with spurious punctuation. Those
essays could then either be excluded or manually corrected.

4.2.2 Building a Missing Sentence Boundary Detector

This section describes the implementation of a missing sentence boundary
detector. Following Nagata et al. (2010) we automatically generated train-
ing data from a corpus of learner language. A classifier was then trained
with linguistic features that are promising indicators for missing sentence
boundaries.

4.2.2.1 Creating Training and Test Set We automatically created
training data from the Kobalt-DAF (Zinsmeister et al., 2011) data. Kobalt-
DAF is an ongoing project that researches the linguistic properties of texts
written by learners of German from different L1 backgrounds. The cur-
rent version of the corpus comprises of 69 texts. We followed the procedure
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proposed by Nagata et al. (2010). Each training sample consists of one sen-
tence. To obtain samples, the Kobalt-DaF' texts were sentence split with the
OpenNLP sentence segmenter as described in Section 4.1. The resulting sen-
tences were used as negative training instances. To create positive instances,
pairs of sentences were concatenated. The order of the original sentences was
shuffled beforehand, to avoid that contiguous sentences were combined.

Two additional test sets were created for evaluating the sentence bound-
ary detector on two different essay rating levels (A2 and B1) from the MER-
LIN corpus. 1000 sample sentences as segmented by OpenNLP sentence
segmenter (section 4.1) were manually labeled for essay rating level A2 and
B1 respectively (henceforth MA2 and MB1). Among the 1000 sentences for
each essay rating level there were only 61 positive instances in MA2 and 36
in MB1. This uneven distribution of negative and positive cases has to be
kept in mind when evaluating the classifiers.

4.2.2.2 Preprocessing for Sentence Boundary Detection The pre-
processing procedure was very similar to the steps described in section 4.1.
Minor difference arose from the fact that for some problems, better solutions
were found later on. Because of the need to manually annotate sentences,
which is very time consuming, the experiments could not be repeated again
at a later point.

No version of the data with tagged letterheads had been available at the
time when we built the missing sentence boundary detector. To exclude
most of the potential letterheads, only lines with more then two tokens were
considered. A full stop was appended to lines that did not yet have a sentence
final punctuation mark. The fact that OpenNLP sentence segmenter has
problems with multiple punctuation marks /// had not been addressed.

Spell checking was only implemented later. Fine grained tags such as
those delivered by RFTagger were not needed for the task at hand, so the
OpenNLP Tagger was used with the standard model provided by OpenNLP.
The data was parsed with the Stanford Parser for German.

4.2.2.3 Features We adapted most of the features used by Nagata et al.
(2010). Nagata et al. (2010)’s feature set included the number of capital-
ized words that are neither proper nouns nor the pronoun I. In German,
however, besides from the proper nouns, also common nouns are capitalized,
so the number of capitalized words excluding all nouns was counted. Na-
gata et al. (2010, 1272) argued that verbs are indicative of missing sentence
boundaries, as a sentence is assumed to consist of a single verbs unless it
contains conjunctions and/or clauses”. Therefore they counted the verbs
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excluding present and past participles. We implemented two distinct verb
features instead: the number of verbs per word, and the number of finite
verbs per word. To include the presence of conjunctions as indicators Na-
gata et al. (2010) considered the frequencies of different conjunctions as well
as the total number of conjunctions. In this work only the total number of
conjunctions is used as a feature. Similarly, we only used the total number
of wh-Words and prepositions.

Furthermore we included the following features into our approach: fre-
quency of colons, semicolons, commas, total number of punctuation marks,
and sentence length probability. Sentence length probability is the likelihood
that a sentence is of a particular length, measured on the distribution of
already observed sentence lengths. For computing this probability Nagata
et al. (2010) assumed that sentence length has a Gaussian distribution and
used the probability density function. The observed sentence lengths can
be computed from the training data. In addition to this more sophisticated
measure of sentence length, we also included sentence length as the number
of words per sentence. It was used as a baseline for all experiments.

Additionally three new features were examined that rely on information
from parse trees. The number of clauses per number of words seemed to
be a promising indicator, since the parser mostly recognized clauses in spite
of missing punctuation. This resulted in parse trees which contained many
clauses under one ROOT node. As the parser often related these clauses to
each other by using coordination, coordinated clauses also seemed a good
indicator. Finally parse tree height seemed promising as it could help to
distinguish sentences which have many clauses because of heavy embedding
from relatively flat trees, that contain many clauses because of missing sen-
tence boundaries.

4.2.2.4 Experiments First the performance of three different machine
learning algorithms - Naive Bayes, Sequential Minimal Optimization Algo-
rithm (SMO) and Decision Tree (J48) - were compared. All algorithms were
used with their standard configurations from WEKA. We used 10 fold cross
validation and the whole feature set to build and test the models. We re-
port precision, recall and F-measure for the positive class (missing sentence
boundary)!”. The experiments showed that the Decision Tree Algorithm was
the best choice.

We build different models on the generated training data using 10 fold

17Cost sensitive learning could have been applied to the sentence boundary detection
task. However, as the main task was proficiency level assessment, it seemed unwise to
spend too much time on sentence boundary detection.
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Name Formula

Avg. Num. Verbs Per Words # verbs /| # W

Avg Num. Finite Verbs Per Words # finite verbs / # W

Avg Num. Conjunctions Per Words #conjunctions /| # W

Avg Num. wh-Words Per Words # wh-words / # W

Avg Num. Prepositions Per Words # prepositions /| # W

Avg Num. Commas Per Words # commas /| # W

Avg Num. Colons Per Words # colons /| # W

Avg Num. Semicolons Per Words # semicolons /| # W

Avg Num. Capital Not Nouns Per Words | # capital not nouns / # W
Avg Num. Punctuation Per Words # punctuation marks / # W
Sentence Length Probability

Num. Tokens In Sentence # W

Avg Num. S Nodes Per Words # clauses /| # W

Avg Num. CS Nodes Per Words # coordinated clauses / # W
Parse Tree Height To Words Ratio parse tree height / # W

Table 4: Features for missing sentence boundary detection.

Classifier Accuracy | Precision | Recall
SMO 92.67 95 90
Naive Bayes 75.07 70 90
Decision Tree J48 94.56 97 92

Table 5: Comparison of different classifier algorithms

cross validation. Then each of these models was evaluated on the hand
labelled MA2 and MBI test sets. A model build with all features (ALL) was
compared to a sentence length baseline (BL). As indicated by Nagata et al.
(2010), the capitalization feature was responsible for many false positives in
their experiments. Therefore we created a model without the capitalization
feature (ALL-CAP).

A detailed summary of the results can be seen in Table 6. When tested
with cross validation ALL performed better than BL. However, when tested
on the MA2 and MB1 sets, ALL’s results dropped below those of BL. Es-
pecially the precision plummeted. For ALL-CAP, the F-measure dropped
when evaluated with cross validation, but increased when tested on MA2
and MB1. The reason is probably, that the spelling conventions regarding
capitalization are complied with to a different degree in the training data
and the MERLIN test sets. Generally the performance on MA2 and MB1
was not too impressive. Even the ALL-CAP model only slightly exceeded
the baseline for MA2 and the performed below the baseline for MB2.
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Dataset Model Accuracy | F-Measure | Precision | Recall

BL 79.00 80 77 83
Train ALL 94.56 94 97 92
ALL-CAP 88.90 88 93 85
BL 93.90 38 50 31
MA2 ALL 57.56 16 9 64
ALL-CAP 91.10 40 34 42
BL 92.10 60 25 61

MB1 ALL 63.53 12 6 66.7
ALL-CAP 88.48 24 16 50

Table 6: Comparison of different models

4.2.2.5 Conclusion Although the proposed method seemed promising
when tested with cross validation, the results on the MERLIN test sets were
not satisfactory. The immensely skewed distribution of positive and negative
samples and too little similarity between the training and test data might
have contributed to this result. Additionally it might be hard to find one
model that can be successfully applied to all levels of the MERLIN corpus, as
the essays at different levels are so dissimilar. It is concluded that the missing
sentence boundary detection component is not yet mature enough to be used
in the further course of this work. It is however considered worthwhile to
continue its development in the future.

5 Features For Language Proficiency Assess-
ment

In this section we introduce our feature set for language proficiency classifi-
cation. We implemented a variety of syntactic, lexical, morphological, and
language model features that were informed by different fields of research.

5.1 Lexical Features

A number of lexical indices of language proficiency have emerged from re-
search on language acquisition, and have recently also been deployed in read-
ability assessment and language proficiency classification (Vajjala and Meur-
ers, 2012; Hancke et al., 2012; Vajjala and Loo, 2013). We integrated a wide
range of lexical indices into our approach to examine their usefulness for
German proficiency assessment.
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5.1.1 Lexical Diversity Measures

Lexical Diversity. Lexical diversity or lexical richness designates the va-
riety and range of the vocabulary used in a text or speech (McCarthy and
Jarvis, 2007). Measures of lexical diversity have been widely deployed as
indices for e.g., vocabulary knowledge and writing quality. They have also
been used to measure the lexical proficiency of language learners (Crossley
et al., 2011a; Lu, 2012; Graesser et al., 2004).

The most commonly used lexical diversity index is probably Type-Token
Ratio (TTR) (McCarthy and Jarvis, 2007). It is known that TTR depends
on text length. McCarthy and Jarvis (2007) explained this flaw with Heaps
law ((Heaps, 1978) c.f. McCarthy and Jarvis (2007)): When a text becomes
increasingly long (many tokens), the chance that new words (types) occur
becomes more unlikely. As a result, long texts appear to be less lexically
diverse when measured with TTR. In a comprehensive study McCarthy and
Jarvis (2007) examined a number of TTR variants that were developed for
decreasing the dependency on text length - mostly involving some math-
ematical transformation. These variations include Root Type-Token Ratio,
Corrected Type-Token Ratio, Uber Index and Yule’s K. McCarthy and Jarvis
(2007)’s results showed that none of these measures were independent of text
length, although for Yule’s K and Uber Index the effect was minor'®.

More recently vode (MacWhinney, 2000) has been proposed as a new
index of lexical diversity. It tries to overcome the dependency on text length
by repeatedly drawing samples of different sizes from a text, and calculating
the mean TTR of this samples. A formula using the D coefficient (Malvern
et al.,, 2004, c.f. McCarthy and Jarvis (2010)) is then deployed to fit a
theoretical curve to the empirical TTR curve obtained from the random
samples (McCarthy and Jarvis, 2007, 2010).

The results of McCarthy and Jarvis (2007)’s examination suggested that
vocd is not independent of text length. Furthermore they showed that de-
ploying the hypergeometric distribution'® can replace the curve fitting pro-
cedure in vocd. The hypergeometric distribution describes the probability
of success for drawing (without replacement) a particular number of tokens
of a particular type from a sample of a certain size (McCarthy and Jarvis,
2007, 2010). McCarthy and Jarvis (2007) proposed HDD, an index of lexical
diversity, that is very similar to vocd, but makes use of the hypergeometric
distribution directly.

McCarthy and Jarvis (2010) introduced the measure of textual lexical

18 According to McCarthy and Jarvis (2007) 2% for Yule’ K and 3% for Uber Index of
the variance was explained by text length.
9 A probabilistic distribution

28



diversity (MTLD). It is a sequential approach to measuring lexical diversity
by calculating the mean length of a string sequence, that maintains a default
TTR value. Whenever a new type is found, the TTR is calculated. As soon
as the default value is reached, a factor count is increased and the TTR is
reset. The same procedure is repeated from that point in the text to the
end of the text. If the last portion of text does not reach the default TTR,
a partial factor is calculated?’. MTLD is then calculated by dividing the
number of tokens by the number of factors. The same procedure is repeated
beginning at the end of the text. The final score is the mean of the forward
and backward MTLD value (McCarthy and Jarvis, 2010).

Measures using type to token ratio Formulas

Type-Token Ratio #Typ/#T ok

Root Type-Token Ratio #Typ/#T ok

Corrected Type-Token Ratio \/ #Typ/(2 x #Tok)

Bilogarithmic Type-Token Ratio log (#Typ)/ log (#T ok)

Uber Index log (#Tok)Z/ log (#Typ/#T ok)

Yule’s K 10% % (sum(f X * X 2)—#Tok)/(#Tok?),
X=vector of freq. for each type,
fX=frequency of each type freq. in X

HD-D McCarthy and Jarvis (2007)

Measure of Textual Lexical Diversity | McCarthy and Jarvis (2010)

Table 7: Type-Token Ratio and variations

Lexical Density and Variation. Lexical density (originally Ure (1971),
c.f. Lu (2012)) and lexical variation measures are closely related to the type
to token based ratios that we discussed in the previous section. Lexical
Density measures the ratio of lexical words (or ‘content words’) to all words.
Lexical variation measures include different ratios that measure the variation
within specific syntactic categories, for example Verb Variation (verb types
to verb tokens) and Noun Variation (noun types to noun tokens). Lu (2012)
deployed lexical density and variation measures in combination with lexical
diversity measures to examine the relationship between lexical richness and
the quality of English learner productions. Those measures also have been
proven to be good indicators of readability by Vajjala and Meurers (2012) for
English texts and Hancke et al. (2012) for German texts. However, although
these measures have been successfully applied in a number of approaches,
doubts remain that - like Type-Token Ratio - they might depend on text
length.

20(1 - ttrlefto’uer)/(l - ttrdefault)
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Measures using lexical type distributions Formulas

Lexical Density #Tok_Lex/#Tok

Lexical Word Variation #Typ_Lex /#Tok_Lex

Noun Variation #Typ_Noun/#Tok_Lex

Adjective Variation #Typ_Adj /#Tok_Lex

Adverb Variation #Typ_Adv/#Tok_Lex

Modifier Variation (#Typ_Adj +
#Typ_Adv)/#Tok_Lex

Verb Variation 1 #TypVerb/#Tok_Verb

Verb Variation 2 #Typ Verb/#Tok_Lex

Squared Verb Variation 1 H#Typ_Verb? J#Tok_Verb

Corrected Verb Variation 1 #Typ Verb/\/2#Tok Verb

Verb Token Ratio #Tok_Verb/#Tok

Noun Token Ratio #Tok_Noun/#Tok

Verb-Noun Token Ratio #Tok_Verb/T#ok_Noun

Table &: Lexical variation features

A comprehensive set of lexical diversity, density and variation measures
was included as can be seen in Tables 7 and 8.

5.1.2 Depth of Knowledge Features

As suggested by Crossley et al. (2011b), not only vocabulary size and di-
versity should be taken into account, but also the depth of lexical knowl-
edge. Their results showed that lexical frequencies and hypernym scores are
promising features for proficiency assessment.

Lexical Frequency. The general frequencies of the lexical items used
by a learner are often seen as an indicator of lexical proficiency. As sum-
marized by Crossley et al. (2011b), it is assumed that learners with a higher
proficiency use less frequent lexical items. High word frequency leads to
more exposure, which makes a word easier to learn (Ellis (2002), cf. Crossley
et al. (2011b)). This hypothesis is supported by studies of lexical acquisition
(Balota and Chumbly (1984), Kirsner (1994) c.f. Crossley et al. (2011b)).

According to Crossley et al. (2011b) the correlation between word fre-
quency and acquisition has also been confirmed for lexical development in
second language learning: In most studies it was shown that beginning learn-
ers were more likely to use and comprehend high frequency lexical items
(Crossley and Salsbury (2010); Ellis (2002) c.f. Crossley et al. (2011b)). To
measure the frequencies of lexical items , Crossley et al. (2011b) retrieved con-
tent word frequency scores from the CELEX database (Baayen et al., 1995)
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- a psycholinguistic database that includes word frequencies as counted from
a reference corpus.

We extracted content word frequencies from dlexDB (Heister et al., 2011).
DlexDB frequency scores are based on the “Kernkorpus des Digitalen Worterbuchs
der deutschen Sprache” (DWDS). The DWDS corpus comprises of 122.816.010
tokens and 2.224.542 types. For providing relevant annotations such as part-
of-speech tags, lemmas or syllables, dlexDB relied on automatic annotation
with NLP tools (Heister et al., 2011). DlezDB was chosen over CELEX be-
cause it is more recent and based on a larger reference corpus (6 million vs.
100 million running words).

DlexDB offers a number of interesting scores for each word, such as abso-
lute and normalized frequencies and log absolute and normalized frequencies
for annotated types (type, word pair), types, lemmas and ngrams, but also
familiarity scores and frequency ranks (see Heister et al. (2011) for a com-
prehensive list). Currently the API for fully automatic queries is still under
development?!. However, the database can be queried via a web interface??.
Queries can be send for individual lexical items or for lists of items, and the
results can be exported after creating a user account (up to 10 000 results).

For making all the necessary frequencies from dlexDB available to our
tool, a custom dlexDB version with all the words in the MERLIN corpus
and all the scores that were relevant had to be created by manually querying
dlexDB. A list with all spell checked words in the MERLIN corpus was
created. It was split into tiles of not more than 4000 words, in order to
remain below the export limit. Each tile was then used to query dlexDB
manually over the web interface: For each word the following scores were
retrieved:

1. Absolute Annotated Type Frequency (ATF)

2. Log absolute Annotated Type Frequency (LATF)
3. Absolute Type Frequency (TF)

4. Log absolute Type Frequency (LTF)

5. Absolute Lemma Frequency (LF)

6. Log absolute Lemma Frequency (LLF)

Finally all non-matches and all words that did not match the category of
‘content word’ (incl. modals) were cleaned out.

Features that measure the general frequency of the lexical items used in
an essay were created using the scores 1.-6. All types in an essay were looked

2Ipersonal correspondence with dlexDB developers
22nttp://wuw.dlexdb.de/query/kern/typposlem/
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Log Frequencies of Annotated Types with Text
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Figure 6: Log Annotated Type Frequencies.

up in the custom dlexDB. For each type of frequency score (ATF, .. , LLF)
the scores of all types in an essay were summed up. They were then divided
by the total number of types that had been found in the custom dlexDB (M
= matches). We used the matches as a denominator in the ratios rather than
the number of types in the essay: the more types are found in dlexDB, the
more items add to the sum of scores. Hence creating ratios with all types in
an essay as a denominator would not be fair, since they do not reflect the
number of types that actually contributed to the sum of scores.
Additionally we calculated the ratio of words occurring in a specific fre-
quency band of LATF. To decide on frequency bands, the LATFs of the
whole custom dlexDB were plotted using R (Figure 6). It can be seen that
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dlexDB Frequency Features Formulas

Annotated Type Ratio sum(ATF) / # M

Type Ratio sum(TF) / # M

Lemma Ratio sum(LF) / #M

Log Annotated Type Ratio sum(LATF) / # M

Log Type Ratio sum(LTF) / # M

Log Lemma Ratio sum(LLF) / # M

Ratio of Words In Log Frequency Band Sum(LATFinFrequencyBandN /# M
Ratio of Lex. Types not in Dlex #not M / #Typres

Table 9: Lexical frequency features using dlexDB

there are many words with a log frequency between zero and one. Above
one, a relatively linear curve ascends up to four, and a steep rise follows up
to five. Between five and six the items become more sparse. The types are
mainly adverbs or modals. Consequently six frequency band were assumed,
one for each step from zero to six. The ratio of all lexical types that were
not found in dlexDB was included as a measure of orthographical or lexical
errors. A summary of all frequency features can be seen in Table 9.

Lexical Relatedness. Conceptual relations between lexical items are
important for the organization of lexical knowledge in the human mind. Hy-
pernymy is a relation of more specific terms (hyponyms - subordinate words)
to less specific terms (hypernyms - superordinate words) (Crossley et al.,
2009). Hypernyms can have a grouping function or be an umbrella term
for hyponyms (e.g., flower is an umbrella term for roses, lilies, daisies ...).
Crossley et al. (2009) claimed that hypernymic relations are good indicators
for lexical organization and the depth of lexical knowledge. The results of
their study indicated that in second language learning, the number of hy-
pernymic relations increases as the learner makes progress. Crossley et al.
(2009, 2011b) used WordNet?® (Miller, 1995) to retrieve hypernymy scores.
WordNet’s organization is hierarchical: Hypernymy scores, that measure the
distance to the root node, are provided. More abstract words have lower
scores (Crossley et al., 2009).

Polysemous words have several related senses (Crossley et al., 2011b).
Polysemy plays a role in the conceptual organization of lexical knowledge
because overlapping word senses relate concepts to each other, and can thus
form connections between lexical items (Crossley et al., 2010). In a longi-
tudinal study of second language learners, Crossley et al. (2010) retrieved
information about polysemy from WordNet synsets (groups of related lexical

23nttp://wordnet . princeton. edu/
p p
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items) to measure “the production of words with multiple senses over time”.
They found out that there is a correlation between growing lexical proficiency
and the production of multiple word senses.

In this work GermaNet 7.0 was used to retrieve information about lexical
relatedness. GermalNet is a machine readable lexical-semantic resource for
German that is similar to WordNet for English. It is structured as a net
or graph of concepts that are interlinked by semantic relations. Concepts
are organized in synsets. Synsets are sets of lexical units with a closely
related meaning. Most words belong to more than one synset. GermaNet
also offers information about conceptual relations such as hypernymy or part-
whole relations (Henrich and Hinrichs, 2010). GermaNet 7.0 consists of 74612
synsets and covers 99523 lexical units?*. It is free for academic use after
signing a license agreement, and a Java API? is available.

Six lexical relatedness features were implemented with information from
GermaNet. The lexicon was queried with the lemma and word category of
each noun and verb type in an essay. For all matches M (= lemma and word
category combinations that were found in GermaNet) all synsets (SynS) were
retrieved. All retrieved synsets were considered, as word sense disambigua-
tion could not be implemented in the scope of this work. For each synset all
immediate hypernyms and hyponyms were retrieved - that is hypernyms and
hyponyms with a node distance of 1 from the synset.

The general connectedness of a word was measured by the average num-
ber of relations per synset that a word belongs to. The average number of
hypernyms per match and average number of hyponyms per match measure
the number of immediate super- and subordinate terms of a match, and are
another index for a word’s connectedness.

Polysemy measures were based on synset scores. The average number or
word senses per word was calculated by using the number of synsets each
match belonged to (= number of word senses). Additionally, the number of
lexical units belonging to each of the synsets might be interesting. Synsets
that contain more lexical units establish more relations and connections in
the lexical network. Additionally the number of frames per verb found in
GermaNet (VM) was included as a feature. GermaNet frames encode the
subcategorization information of a verb. Table 10 shows a summary of all
lexical connectedness features.

2Info on GermaNet 7.0 on the project website http://www.sfs.uni-tuebingen.de/
1sd/index.shtml
ZHere: Java API 7.0 http://www.sfs.uni-tuebingen.de/1sd/tools.shtml
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Lexical Connectedness Features Formulas

Avg. Num. Synsets per Match # SynS / # M

Avg. Num. Lexical Units per Synset sum(# LexUnit in SynS) / # SynS
Avg. Num. Relations per Synset sum(# RelSynS of SynS)/ # SynS
Avg. Num. Hypernyms per Match sum(# Hyper per Syns)/ # M
Avg. Num. Hyponyms per Match sum(# Hypo per Syns) / # M
Avg. Num. Frames per Verb # Frames / # VerbalM

Table 10: Lexical features measuring the connectedness of lexical items.

5.1.3 Shallow Measures and Error Measures.

As two shallow measures of lexical complexity, syllable count?® and word

length in characters were included. Those measures were used in language
acquisition studies (Crossley et al., 2011a), but were also part of traditional
readability formulas (Kincaid et al., 1975). Finally, errors on the word level
were measured by counting the spelling errors found by Google Spell Check.

Other Lexical Measures ‘ Formulas

Text Length # Tok

Avg. Num. Characters per Word # Char / # Tok

Avg. Num. Syllables per Word # Syll / # Tok
Google Spell Check Error Rate # Spell Erros / # Tok

Table 11: Shallow measures of lexical proficiency.

5.2 Language Model Features

Ngram language models can predict the probability of a specific sequence of
words based on its history (Schwarm and Ostendorf, 2005).

m

P(w) = P(wy) P(ws|wy) [ [ Plwilwi—1, wi—s) (2)

=3

Language models can be deployed to measure textual complexity, as the dis-
tribution of word sequences tends to differ with complexity. Therefore they
have been widely used in readability assessment (e.g., Schwarm and Osten-
dorf (2005); Petersen and Ostendorf (2009); Feng (2010)). Ngram frequency

26Gyllable counts were obtained by simple heuristics: In German, a syllable mostly
contains exactly one vowel - phonetically speaking. This means that in written language
diphthongs, double vowels and the combination vowel+e, which indicates a long vowel,
have to be counted as one vowel.
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features are closely related to language models. They have been included in
the approaches of Briscoe et al. (2010) and Yannakoudakis et al. (2011) to
capture lexical and - in the case of higher order ngrams - structural informa-
tion.

Language models draw their power form distributional probabilities and
thus work best when a large amount of domain specific training data is
available. This was not the case for the MERLIN data. Petersen and Os-
tendorf (2009) faced the same problem, when training readability models on
the Weekly Reader, an educational magazine at different grade levels. As a
solution they trained their language models on separate data sets (Petersen
and Ostendorf, 2009). Feng (2010) who, like Petersen and Ostendorf (2009),
worked with the Weekly Reader data, criticized this approach and proposed
a leave-one-out approach for training language models directly on the Weekly
Reader data.

We rejected the idea of Feng (2010)’s leave-one-out approach, because
the amount of data offered by the MERLIN data would probably still be
too small. Compared to the Weekly Reader data set used by Feng (2010),
there are less documents - 1000 MERLIN essays in total compared to 1629
articles (Feng, 2010, 46) form the Weekly Reader. Additionally, the average
number of words per document is much larger in the Weekly Reader (about
130-330 words) than in MERLIN (about 33-218 words). Another reason for
using a separate data set for language model training is that the essays in
MERLIN were written on three different tasks per exam level. It can be
assumed that an essay shares more vocabulary with essays that were written
on the same task than with those written on different tasks. This could cause
the language model scores to represent the tasks rather than the proficiency
levels.

Therefore separate training corpora, that we collected from the web, were
used for language modeling. 2000 articles from News/Kids (http://www.
newsdkids.de), a German website which adapts news for children was used
to represent easy texts. The difficult language model was trained on 2000
articles from the website of the German news channel NTV (http://www.
n-tv.de). The same data has been used for building language models for
German readability classification by Hancke et al. (2012).

Schwarm and Ostendorf (2005) and Feng (2010) suggested that mixed
models, that combine words and parts-of-speech, are more effective for read-
ability assessment than simple word based models. But Petersen and Osten-
dorf (2009) reached the opposite conclusion. Therefore both types of models
were included.

The language models were prepared and evaluated as described in Hancke
et al. (2012): All words were converted to lowercase and except for sentence
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final punctuation, all punctuation was removed. As proposed by Petersen
and Ostendorf (2009), a bag-of-words classifier was first trained with the
language modeling data set (News4Kids and NT'V'). Information Gain (Yang
and Pedersen, 1997) was used for feature selection. All words below an
empirically determined threshold were replaced by their part of speech. SRI
Language Modeling Toolkit (Stolcke, 2002) was used for training unigram,
bigram and trigram models on the words-only and mized word/part of speech
corpora representing easy and difficult texts. For all models, Kneyser-Ney
smoothing (Chen and Goodman, 1999) was selected as smoothing technique.
This resulted in twelve language models.

The perplexity scores (Equation 3) from all twelve language models were
included as features for proficiency assessment. Perplexity is an information-
theoretic measure that indicates the fit between a text and a language model.
To obtain these scores the spelling-corrected version of the MERLIN data
was used. This should minimize cases where ngrams were not recognized due
to spelling errors. All language model score features can be seen in Table 12.

1
PP =28 wwhereH(t|c) = —log, P(t|c) (3)
m

Mixed Model
Unigram perplexity

Word Based Model
Unigram perplexity

Level of Difficulty

Easy Bigram perplexity | Bigram perplexity
Trigram perplexity | Trigram perplexity

Unigram perplexity | Unigram perplexity

Difficult Bigram perplexity | Bigram perplexity

Trigram perplexity

Trigram perplexity

Table 12: The twelve perplexity scores used as language model features

5.3 Syntactic Features

Syntactic characteristics and measures have been deployed as features for
proficiency assessment (Briscoe et al., 2010), but also in L2 developmental
studies (Hawkins and Buttery, 2009, 2010; Lu, 2010; Biber et al., 2011) and
readability assessment (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala
and Meurers, 2012). However, all these approaches worked with English
texts. Hancke et al. (2012) adapted a number of syntactic features previ-
ously used in L2 developmental studies (Lu, 2010) and readability assess-
ment (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers, 2012)
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for readability assessment on German texts. We used these features as the
foundation of our syntactic feature set and added several new indices.

5.3.1 Parse Rule Features

Briscoe et al. (2010) and Yannakoudakis et al. (2011) used the frequencies
of parse rule names to gain information about the grammatical structures in
learner texts. They extracted parse rule names from the parse trees produced
by the RASP parser. While these types of features are not theoretically well
informed, they allow a very comprehensive inclusion of the syntactic struc-
tures used by the learners. Looking at the distributions of those structures
might point to indicative constellations.

We included similar features, based on the trees produced by the Stanford
Parser. Parse tree rules were extract by the means of listing all local trees
(Figure 7) for all parse trees. As a corpus for parse rule name extraction a
subset of 700 articles form the NTV corpus was used. From the extracted
parse rule names, a vector was formed. For each essay in the MERLIN
corpus, the frequencies of the parse rule names in this vector were counted
and divided by the number of words in the essay. Additionally experiments
were made with just indicating whether a parse rule was present in an essay
or not by putting the value to either zero or one.

(NUR PWAV $.)

(VP PP ADJD NP-0A VVPP)
(CNP-SB NE $, NN KON NN)
(PP APPR PRF)

(S KOUS NP-DA NP-0A VVFIN)
(VP PP NP-0A PP VVINF)
(PP APPR CNP PP)

(S CARD VVFIN NP-SB PP)
(NP ART NN PP $.)

(AP PP)

Figure 7: Examples for parse tree rules.

5.3.2 Dependency Features

Yannakoudakis et al. (2011) included the sum of the longest distances in
word tokens between a head and a dependent in a grammatical relation
as an indicator of syntactic sophistication. In readability assessment, the
length of dependencies has also been used in various shades. Dell’Orletta
et al. (2011) suggested the average length of dependencies in words as a
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dependency-based alternative to phrase length. Additionally they examined
the number of dependents per verb as an indicator of readability. Vor der
Briick and Hartrumpf (2007); Vor der Briick et al. (2008) used the length
of dependencies headed by specific parts-of-speech, such as number of words
per NP and VP, as features for their readability classifier.

In this work, the following dependency based features were included: the
maximum number of words between a head and a dependent in a text, the
average number of words between a head and a dependent per sentence, the
average number of dependents per verb (in words) including and excluding
modifiers, and the number of dependents per NP (in words).

5.3.3 Parse Tree Complexity and Specific Syntactic Construc-
tions.

As a starting point, we included the syntactic features that Hancke et al.
(2012) adapted for German readability assessment from various sources.
Features adapted from readability assessment comprised average parse tree
height and the average length and number of NPs, VPs and PPs per sentence
(Petersen and Ostendorf, 2009; Feng, 2010). To this set Hancke et al. (2012)
added VZs (‘zu’-marked infinitive phrases) per phrase as a language specific
feature.

Syntactic Features from SLA Formulas

Avg. Length of a Clause #W /#C

Avg. Sentence Length # W /#S

Avg. Length of a T-Unit # W /#TU

Avg. Num. Clauses per Sentence #C/#S

Avg. Num. T-Units per Sentence #TU /#S

Avg. Num. Clauses per T-Unit #C /) # TU

Avg. Num. Complex-T-Units per T-Unit # comp. TU / # TU
Avg. Num. Dep. Clause per Clause #DC / #C

Avg. Num. Dep. Clause per T-Unit #DC /# TU

Avg. Num. Co-ordinate Phrases per Clause #CP /#C

Avg. Num. Co-ordinate Phrases per T-Unit #CP /# TU

Avg. Num. Complex Nominals per Clause # compl. Nom. / # C
Avg. Num. Complex Nominals per T-Unit # compl. Nom. / # TU
Avg. Num. VPs per T-Unit # VP /| # TU

Table 13: Syntactic features from Hancke et al. (2012) based on features form

SLA.

The measures from second language acquisition adapted by Hancke et al.
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(2012)?" aim at capturing a learner’s syntactic development by examining
specific syntactic properties. Complexity as reflected in the length of pro-
duction units is measured by average length of sentences, clauses and T-Units
(Lu, 2010; Vajjala and Meurers, 2012). Sentence complexity is reflected by
the number of clauses per sentence. Ratios like dependent clauses per clause
and number of complex T-Units per T-Unit are used to capture the amount
of embedding, while the amount of coordination is represented by e.g., the
number of coordinated phrases per clause and the number of T-Units per
sentence. Finally, the complexity of particular structures is considered (e.g.,
complex nominals per clause).

Syntactic features from readability assessment | Formulas

Avg. Num. NPs per Sentence #NP / # S

Avg. Num. VPs per Sentence # VP / #S

Avg. Num. PPs per Sentence #VZ | #S

Avg. Num. VZs per Sentence # PP/ #S

Avg. Num. NPs per Clause # NP/ #C

Avg. Num. VPs per Clause # VP /#C

Avg. Num. PPs per Clause #PP/#C

Avg. Num. VZs per Clause #VZ | #C

Avg. Length of a NP sum(len(NP)) / # NP
Avg. Length of a VP sum(len(VP)) / # NP
Avg. Length of a PP sum(len(PP)) / # NP
Avg. Num. Dep. Clauses per Sentence #DC/#S

Avg. Num. Complex T-Units per Sentence #compl. TU/ # S
Avg. Num. Co-ordinate Phrases per Sentence #CP /#S

Avg. Parse Tree Height sum(parseTreeHeight) / # S

Table 14: Syntactic Features from Hancke et al. (2012) based on previous
work on readability assessment.

Inspired by different sources, we added several other syntactic features.
The average number of non-terminal nodes per sentence, clause and word
were included following Feng (2010). The internal complexity of NPs was
measured by taking into account the number of modifiers per NP as was
suggested by Graesser et al. (2004). Additionally the complexity of VPs was
measured in the same way.

The number of passive voice constructions was counted per clause and
by sentence. This feature was inspired by work on text simplification: Sid-
dharthan (2002) identified passive constructions to transform them into ac-

2TThey follow Vajjala and Meurers (2012) who first deployed these measures for read-
ability assessment
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passive : (wird|werden|wurden)/VAFIN .*x */VVPP
Futur 2 : (wird|werden|wurden)/VAFIN .* */VVPP haben/VAINF

Figure 8: Regular expressions used to identify passive voice

tive voice, because active voice is supposedly simpler. Grounded on this
hypothesis it was interesting to investigate passive voice as a feature for
proficiency assessment. In German, there is also the ‘Zustandspassiv’ (Das
Fenster ist gedffnet.), which we did not included here.

To identify passive voice, we used dependency parsing and regular ex-
pressions (Figure 8). In passive voice, the inflected verb is a form of werden
followed by a participle. The same construction is also part of Futur 2,
where it is, however, followed by haben. For each verb in a sentence, all its
verbal dependents were extracted from the dependency parse. Each verb was
represented by its form and part of speech (wordform/P0S-Tag). The head
verb was concatenated into a string with its dependents. On this string, the
regular expressions described above was applied to find passive voice.

A more detailed analysis of other specific constructions was inspired by
Biber et al. (2011). In their article they challenged the common practice of re-
lying on T-Unit and clausal subordination based measures for the assessment
of grammatical complexity in writing. They investigated 28 grammatical fea-
tures that were based on the grammatical types and grammatical functions
of clauses and phrases (Biber et al., 2011).

In this work, it was not possible to include the full range of Biber et al.
(2011)’s indicators of complexity. Biber et al. (2011) identified some features
manually such as the syntactic functions of prepositional phrases. For other
features, external resources would be needed, e.g., a list of nouns that control
complement clauses®® (Biber et al., 2011). Inspired by Biber et al. (2011)’s
work, we included a more fine grained analysis of dependent clauses. Finite
dependent clauses that start with a conjunction or pronoun, finite dependent
clauses that do not start with a conjunction or pronoun, and non-finite de-
pendent clauses (‘satzwertige Infinitive’) were set apart. Finite clauses that
start with a conjunction or pronoun were further differentiated into interrog-
ative, conjunctional and relative clauses.

28 GermaNet verb frames, that contain subcategorization information for the verbs could
be used to enable a more fine grained analyzes. However an implementation was not
possible within the bounds of this work.
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Other Syntactic Features Formulas

Avg. Num. Non-Terminals Per Sentence # NTs / #8S

Avg. Num. Non-Terminal Per Words # NTs /| # W

Avg. Num. Modifiers Per NP # modifiersInNPs / # NPs
Avg. Num. Modifiers Per VP # modifiersInVPs / # VPs
Passive Voice - Sentence Ratio # passiveVoice / # S

Passive Voice - Clause Ratio # passiveVoice /# C

Dep. Clauses with Conj. to dep. Clause Ratio | # DC w. Conj. / # DC
Conjunctional Clauses Ratio # Conj. C / # dep. C w. Conj.
Interrogative Clauses Ratio # Inter. C / # dep. C w. Conj.
Relative Clauses Ratio # Rel. C / # DC w. Conj.
Dep. Clauses w.o. Conj. to dep. Clause Ratio | # DC w.o. Conj. / # DC
‘satzwertige Infinitive’ to Clause Ratio # satzInf / # DC

Table 15: Other syntactic features that measure parse tree complexity and
examine specific constructions.

5.4 Morphological Features

Morphological indicators have proven to be valuable features for proficiency
classification for Estonian (Vajjala and Loo, 2013) and for readability as-
sessment for various languages with a rich morphology (Dell’Orletta et al.,
2011; Francois and Fairon, 2012; Vor der Briick and Hartrumpf, 2007; Vor der
Briick et al., 2008; Hancke et al., 2012).

German,too, has a rich inflectional and derivational morphology. Inflec-
tional morphemes convey a range of grammatical meanings. German nominal
declension has four cases and several different declension paradigms. Differ-
ent verb forms and inflectional morphemes of the finite verb express person
and number (e.g., ich gehe [I go|, du gehst [you go]) as well as tense and
mood.

Compounding is very productive in German word formation. Words
with different parts-of-speech can be combined (e.g., Mauseloch [mouse hole],
Schwimmbad [swimming pool|, Grosseltern [grandparents]). Prefixation (Ge-
baude [Building]) and suffixation are also very common and diverse. For ex-
ample, there is nominalization with overt suffixes (regieren|[govern| — Regierung
[government]) or without an overt suffix (laufen [to run] — der Lauf [the run))
(Hancke et al., 2012).

In this work, the morphological features proposed for readability assess-
ment by Hancke et al. (2012) were taken as a vantage point for exploring
the impact of morphological features on proficiency assessment. Addition-
ally, tense was explored in more detail, using automatically extracted tense
patterns.
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5.4.1 Inflectional Morphology of the Verb and Noun

Following Hancke et al. (2012) we extracted a broad range of features based
on verbal inflection including person, mood and type of verb (finite, non-
finite, auxiliary). Additionally we included nominal case information as
features. All inflectional features (Tables 16 and 17) were automatically

extracted from the output of the RFTagger.

Verb Features

Formulas

Infinitive-Verb Ratio
Participle-Verb Ratio
Imperative-Verb Ratio
First Person-Verb Ratio
Second Person-Verb Ratio
Third Person-Verb Ratio
Subjunctive-Verb Ratio

# infinitive Vs / # Vs

# participle Vs / # Vs

# imperative Vs / # Vs

# 1st person Vs / # finite Vs

# 2nd person Vs / # finite Vs
# 3rd person Vs / # finite Vs

# subjunctive Vs / # finite Vs

Finite Verb-Verb Ratio
Modal-Verb Ratio
Auxiliary-Verb Ratio

Avg num. Verbs per Sentence

# finite Vs / # Vs

# modal Vs / # Vs
# auxiliary Vs / # Vs
# Vs |/ #S

Table 16: The features based on the inflectional morphology of the verb

Noun Features
Accusative-Noun Ratio
Dative-Noun Ratio
Genetive-Noun Ratio
Nominative-Noun Ratio

‘ Formulas
# accusative Ns / # Ns
# dative. Ns / # Ns
# genitive Ns / # Ns
# nominative Ns / # Ns

Table 17: The features based on inflectional morphology of the noun

5.4.2 Derivational Morphology of the Noun

Examining nominal suffixes is not only interesting because derived words are
supposedly more complex than simple words (Vor der Briick et al., 2008).
Word stems of Germanic origin can often be combined with other suffixes
than word stems that have Greek or Latin roots (e.g., Linguist vs. Sprach-
wissenschaftler).

To capture the information encoded in nominal suffixes, we counted the
occurrence of each suffix in a list (Table 18) originally compiled by Hancke
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et al. (2012). The list includes all different gender and number forms for
each suffix. The counts for all forms of a suffix were accumulated in order
to not get different counts for the plural and singular forms or for different
genders of the same suffix. Only polysyllabic words were considered in order
to exclude simple nouns that are homomorphs of a derivational morpheme
(e.g., Ei [egg] vs. suffix -ei).

Suffix | Further Suffix Forms
Suffix | Further Suffix Forms - § Sl
; ; 1st isten, 1stin, 1stinnen
ant anten, antin, antinnen . .
. . on ionen
arium | arien . .
. . ismus | ismen
ast asten, astin, astinnen . o
1itat 1taten
at ate . .
. . keit keiten
ator atoren, atorin, atorinnen . .
ling lingen
atur aturen . .
. . nis nisse
el elen
) ) schaft | schaften
er erin, erinnen .
tum tumer
ent ents
ung ungen
enz enzen
. . ur
eur eure, eurin, eurinnen
. . werk | werke
heit heiten
wesen

Table 18: List of German derivational suffixes used

Hancke et al. (2012)’s experiments with different ratios showed that the
best results were obtained by dividing the suffix counts by the number of
tokens in an essay. Therefore the suffix features were calculated by counting
the frequencies of all suffixes in an essay and then dividing these counts by
the number of all tokens in the essay. Additionally the ratio of all derived
nouns to all nouns was included as a feature.

5.4.3 Nominal Compounds

Following Hancke et al. (2012) the ratio of compound nouns to all nouns and
the average number of words in a compound were included as features. Com-
pounds were identified and split into their components with JWordSplitter
3.4%9. Tt is unclear whether the use of compounds is indicative of a learner’s
linguistic proficiency. However, we think it is worth investigating. Espe-
cially for learners with native languages that do not use this word formation
mechanism, compounds may be a stumbling block.

http://www.danielnaber.de/jwordsplitter
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5.4.4 Tense

To capture the usage of tense, ‘tense patters’ (Figure 9) based on the mor-
phologically rich tags of the RFTagger were extracted. This approach was
preferred to using regular expression for matching pre-defined tenses because
we believe that it allows a better coverage of possible constellations. The
tense patterns could be very interesting for a linguistic characterization of
the CEFR levels, because they might reveal what tenses the learners know
at each level.

John fragt den Mann,
VFIN.Full.Pres
der neben thm gewohnt hat,
VFIN.Haben.Pres VPP.Full.Psp
ob er die Katze fittern kann.
VFIN.Mod.Pres VINF.Full.-

Figure 9: Example for tense patterns

The patterns were extracted from the same subset of the NT'V corpus as
the parse rules (section 5.3). From the dependency parse, all those verbal
children of all verbs were collected, where the relation did not cross the
boundaries of a subordinated clause (tags KOUS, KOUI) or a conjunction (tags
KON). This restriction was necessary because subordinated clauses are often
the dependent of the finite verb in the main clause. Relative clauses were
not considered boundaries, since they do not attach to verbs. The verb’s
children found in this way were substituted by their RFTagger tags. The
information about number, person and mood was removed, so that only the
tense information remained.

To make sure that only the longest pattern was included, the extraction
routine checked whether the previous match was included in the current
match. If so, the current pattern replaced the previous pattern instead of
being added as a new pattern. For each script, the frequency of each pattern
was counted and divided by the number of tokens in the script. Alternatively,
we experimented with using a binary scale, where one indicates that a pattern
was present in an essay, and zero indicates that it was not present.
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Figure 10: Number of samples per class in the training and test set

6 Experiments and Results

6.1 Experimental Setup

All experiments were conducted on the MERLIN data set described in sec-
tion 3. The data was preprocessed as described in Section 4.1. For supple-
menting statistical analysis we used R. The WEKA machine learning toolkit
(version 3.7.6) (Hall et al., 2009) was used for all experiments involving ma-
chine learning. All feature values were normalized with the WEKA filter
Normalize, such that all values fall into the interval [0,1]. Most experiments
were performed with 10-fold cross validation on the whole data set, as well
as on a separate training and test set. For creating the training and test set,
2/3 randomly chosen samples from each class were added to the training set
and 1/3 to the test set.

Splitting the data set regarding no other factor than class (= essay rating
level) resulted in an uneven distribution of exam types across the classes and
the training and test set (Figure 11). While in theory this should not have
any influence on the results, in practice it is quite likely that the essay rating
level (=class) is not independent of the exam type. The correlation between
exam type and essay rating level is 0.8 (Pearson’s correlation).
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Figure 11: Exam type distribution across the classes in the training and test
set.

6.2 Comparison of different Algorithms for Classifica-
tion

As a first step we experimented with different machine learning algorithms.
We tested SMO, Naive Bayes and J48 Decision Tree. Naive Bayes and J48
were used with their standard configurations®® in WEKA, except that for
SMO, the normalization of the input was turned off since the data was already
normalized. All features were used for building the models.

The results can be compared to a majority baseline, which represents the
performance if every sample would be classified as the class with the most
samples. For the sake of comparison we also built a regression model with
WEKA’s Linear Regression (LinearRegression') using cross validation for
training and testing. It resulted in a good correlation (r =0.78) but also in
a relatively high root mean squared error (0.68).

Comparing the results of the three different classification algorithms showed
that SMO performed better than the other classifiers. Therefore it was cho-
sen for all further experiments. This result was expected since Support Vec-

30Naive Bayes: weka.classifiers.bayes.NaiveBayes ; J48: weka.classifiers.trees.J48 -C 0.25
-M 2 ; SMO: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 2 -V -1 -W 1
-K ”weka.classifiers.functions.support Vector.PolyKernel -C 250007 -E 1.0”

31 Automatic feature selection and the elimination of redundant features was turned off
in the configuration
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Holdout CV on all data

Classifier Accuracy | F-Measure || Accuracy | F-Measure
Majority Baseline 33.0 16.3 33.0 16.3
SMO 57.2 56.4 64.5 64.0
Naive Bayes 41.17 40.3 48.2 49.3
J48 48.7 47.8 56.5 56.2

Table 19: Comparison of different classifier algorithms.

tor Machines are especially suitable for numeric features and larger feature
spaces. They have been previously used for similar problems with good re-
sults (Petersen and Ostendorf (2009); Vajjala and Meurers (2012)).

It is remarkable that irrespective of the classifier, the cross validation re-
sults were persistently about 7 % better than the results with the separate
training and test set. There are several possible explanations. The models
built with cross validation were probably more accurate because more train-
ing data was available. The models’ variance could be high, which would
mean that they probably over-fit the training data and therefore do not gen-
eralize well on different test sets. The unequal distribution of exam types
across training and test set could be another reason. We examined the SMO
model in more detail by looking at the performance of each cross validation
fold separately. The highest accuracy was 10.7 % better than the worst (59.2
%). The worst result for a fold in cross validation, however, was still 2 %
better than the accuracy for our holdout test set. This indicates that the rel-
atively high variance of the model is responsible for the difference in results
between cross validation and holdout estimation in a greater degree than the
amount of training data.

6.3 SMO Configuration and Optimization

For all further experiments we used SMO with a polynomial kernel of expo-
nent 1. We also experimented with other exponents and with RBF kernel, but
the polynomial kernel with exponent 1 exceeded the other options. The poly-
nomial kernel implements a function (zy)", which computes the dot product
of the vectors x and y and raises it to the power of n. Choosing n = 1 in
fact results in a linear model (Witten and Frank, 2005).

One of the disadvantages of Support Vector Machines is their sensitivity
to the tuning of certain parameters. When using the polynomial kernel, once
an exponent is chosen, the cost parameter C should be optimized in order to
get robust results (Harrington, 2012). The cost parameter manages the trade
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off between making the margin as large as possible and keeping a distance
of at least one between the samples (Harrington, 2012). If C is too large the
model will tend to over-fit. If it is too small it tends to under-fit.

In order to optimize the cost parameter in our experiments we used
WEKA’s meta classifier CVParameterSelection. It performs 10 fold cross
validation on the training data to find the optimal parameter value in a
specified range. We chose a range from 1 to 10 in steps of 1. One of the main
advantages of using the meta classifier is that it allows the use of 10 fold cross
validation for parameter selection and for model building / performance eval-
uation. It performs an ”inner” cross validation for parameter selection on
each "outer” cross validation for model building / performance evaluation.
The disadvantage is, that this procedure is computationally expensive and
time consuming.

6.4 Measuring the Contribution of Different Feature

Types

Syntactic Features r

Avg. Num. Dep. Clause per Clause 0.58
Avg. Length of a T-Unit 0.57
Avg. Num. Dep. Clause per T-Unit 0.56
Avg. Num. VZs per Sentence 0.55
Avg. Num. Complex-T-Units per T-Unit 0.54
Avg. Num. VPs per T-Unit 0.54
Avg. Num. Dep. Clauses per Sentence 0.53
Avg. Num. VZs per Clause 0.52
Dep. Clauses with Conj. to dep. Clause Ratio | 0.50
Avg. Num. Clauses per T-Unit 0.50

Table 20: The ten syntactic features that correlate best with proficiency level.

To enhance our understanding of the feature groups we calculated the
correlation of each feature with proficiency level (= essay rating level), based
on the training set. The 10 features of each group that correlated best with
proficiency level are shown in Tables 20 - 23. Although the parse rule (PR)
and tense features (TEN) conceptually belong to the syntactic and mor-
phological feature group respectively, they were treated as separate groups
because they differ from the other groups in several respects. While the
other features are mostly theory driven, the tense and parse rule features are
data driven. Additionally they contain a far larger amount of features than
the other groups, and there is more sparsity. Features like average sentence
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Morphological Features r

Derived Nouns-Nouns Ratio 0.59
Nominative-Noun Ratio -0.54
Second Person-Verb Ratio -0.46
Avg. Compound Depth 0.45
Dative-Noun Ratio 0.40
Avg. Num. Verbs Per Sentence | 0.40
Infinitive-Verb Ratio 0.38
keit 0.37
ion 0.35
Third Person-Verb Ratio 0.35

Table 21: The ten morphological features that correlate best with proficiency
level.

length and Type-Token Ratio can be reliably calculated for every text while
many tense constellations and parse rules occur only in some texts.

Lexical Features T Language Model Features | r

Text Length 0.81 Unigram Plain Difficult -0.47
Root Type-Token Ratio 0.78 Unigram Plain Easy -0.46
Corrected Type-Token Ratio 0.78 Bigram Mixed Difficult 0.42
Corrected Verb Variation 1 0.75 Trigram Mixed Easy 0.34
Squared Verb Variation 1 0.74 Bigram Mixed Easy 0.33
Type-Token Ratio -0.57 Bigram Plain Difficult 0.32
HDD 0.54 Trigram Plain Easy 0.25
Google Spell Check Error Rate -0.47 Bigram Plain Easy 0.15
Avg. Num. Characters per Word | 0.47 Unigram Mixed Difficult | 0.09
Avg. Num. Syllables per Word 0.44 Trigram Mixed Difficult 0.07

Table 22: Ten lexical and language model features that correlate best with
proficiency level.

The lexical group contains 5 features that correlate better than the best
correlations in all other groups (r > 0.7). The other 5 features among the
10 best of this group still have good correlation values. Notably Type-Token
Ratio has a negative correlation with proficiency level, while its variants
show positive correlations. This may be explained with Type-Token Ratio’s
dependency on text length. For extremely short texts it is easier to obtain a
high Type-Token Ratio than for longer texts. This negative correlation might
indicate that the increase in text length in the higher levels is greater than
the increase in the richness of vocabulary. Text length and Type-Token Ratio
have a correlation of -0.65. Notably the correlation of other features with
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text length are much higher: Root Type Token Ratio (r = 0.86), Squared
Verb Variation (r = 0.81) and Corrected Verb Variation (r = 0.84). This
might indicate that they are not actually good measures for proficiency but
encode text length instead.

In the syntactic group none of the features correlate as highly with profi-
ciency level as the 5 best features in the lexical group. However, all ten values
are above 0.5. More than half of the top 10 correlating syntactic features en-
code embedding. The features of the morphological group all in all correlate
slightly worse than those in the syntactic group. Most notable is the rela-
tively high (r = 0.59) correlation of Derived Nouns-Noun Ratio which encodes
the overall use of nominal derivation and nominalization. Nominative-Noun
Ratio has a negative correlation and could either encode the use of concep-
tually simple sentences or grammar mistakes - another case might have been
correct in some places where nominative appeared. A detailed study would
be interesting. Second Person-Verb Ratio might be seen as a sign of personal
and non-formal style. It is to be suspected that its use depends on the task,
the essays were written for. The fact that it correlates better with exam type
(r =-0.58) than with proficiency level supports this claim.

From the parse rule group ROOT_NUR had a high negative correlation
with proficiency level. NUR means “Non Unary Root”. It is an artifact
used by the Stanford Parser when converting trees from NEGRA to Penn
Treebank format trees. It is introduced if a tree has multiple children under
the ROOT node (personal correspondence with Christopher Manning). It is
hard to interpret this in the context of proficiency levels, but the negative
correlation and its occurrence in non standard trees indicate that it reflects
word order mistakes or missing punctuation. The parse rule feature with
the second highest correlation encodes ‘satzwertige Infinitive’ like Computer
zu spielen. It should be mentioned that most of the over 3000 parse rule
features exhibited a correlation of lower than 0.1.

In the language model group the easy and difficult Plain Text Unigram
Perplexity scores were the most indicative features. It is however intriguing
that both correlations are negative. It would have been expected to see
a negative correlation for the model that represents easy language and a
positive correlation for the model that represents difficult language. In the
tense group all correlations were quite low. The best values were achieved by
an infinite modal followed by an infinite verb as in Sie kénnen gehen. [You
may go.] and by infinitives with ‘zu’.

To further examine the predictive power of each group of indicators we
built a classifier with each feature group individually. Text length was chosen
as an additional baseline due to its high correlation with proficiency level.
The results showed that all feature groups outperformed the majority base-
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Parse Rule Features r Tense Feature r

ROOT_NUR -0.62 VINF .Mod.- VINF.Full.- 0.21
VZ_PTKZU_VVINF 0.49 VINEF.Full.zu 0.21
S_NP-SB_VVFIN_PRF_NP-SB_$. | -0.40 VFIN.Aux.Pres VPP.Full.Psp 0.18
NP-SB_ADJA_ADJA_NN_PP -0.39 VFIN.Full.Pres -0.17
NP-SB_NN_NE -0.32 VINF.Aux.- VPP.Full.Psp 0.15
NP-OA_PPER -0.31 VFIN.Mod.Pres.VFIN.Sein.Pres | 0.14
VP_VVPP_$,_CVP 0.31 VINEF .Full.- VFIN.Full.Past 0.14
VP_NP-DA_NP-OA_VVIZU 0.31 VFIN.Mod.Pres.VINF.Sein.- 0.13
NP-OA_NE -0.28 VFIN.Mod.Pres -0.12
ROOT_NP -0.28 VIMP.Full.Sg -0.12

Table 23: Ten parse rule and tense features that correlate best with profi-
ciency level.

line, but only the lexical feature group performed better than the text length
baseline in terms of accuracy in the cross validation scenario. The lexical
and morphological group performed better than text length when comparing
F-measure. In the holdout scenario no feature outperformed the baseline of
text length in terms of accuracy, and only the lexical group exceeded it in
terms of F-measure. With both methods of evaluation the lexical and mor-
phological groups performed best, and parse rule and tense features yielded
the poorest results. The results were mostly congruent with the insights
gathered from looking at the ten best correlating features from each group.
The lexical features performed best. Although displaying slightly lower cor-
relations with proficiency level among the top 10 features, the classifier built
with the morphological features exceeded the classifier built with the syntac-
tic features. As expected the parse rule, language model and tense groups
performed worst.

Further investigating the parse rule and tense feature groups however,
we found out that representing those features as binary instead of frequency
weighted vectors immensely improved their performance (7 % and 18 % re-
spectively). Looking at the values of the tense features before normalization
revealed that they were mostly 0 and even the non zero values were mostly
close to 0. The maximum value was 2. For the parse rule features the sit-
uation was similar, with the maximum feature value being 0.17. This could
explain why they yield better result when used as binary features: if the
feature values are mostly very close to zero they may not be separable by the
support vector machine, especially when mixed with larger values.

We conclude that it would be optimal to use the tense and parse rule
features as binary features. However, combining binary and numeric features
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Holdout CV on all data

Name # | Accuracy | F-Measure || Accuracy | F-Measure
Majority Baseline - 33.0 16.3 33.0 16.3
Text Length (BL) 1 61.4 55.7 63.9 59.4
SYN 47 53.6 49.9 58.2 54.5
PR 3445 49.0 47.2 57.1 56.0
LEX 46 60.5 58.9 68.7 67.4
LM 12 50.0 46.7 54.6 51.0
MORPH 41 56.82 55.7 61.8 60.1
TEN 230 38.5 36.8 44.2 41.7

Table 24: Performance of each group of features individually.

Name | Accuracy | F-Measure
PR 61.1 60.5
TEN 56.8 54.7

Table 25: Performance of the tense and parse rule groups as binary features.
Training and testing with 10-fold CV on all data.

into one model would require more sophisticated machine learning techniques
and is not manageable in the scope of this work. It is still an interesting fact
that might be picked up in the future.

6.5 Combining Different Feature Groups

After having examined the performance of each feature group individually we
tested the performance of all possible combinations of feature groups. This
experiment might offer some insights on which of the feature groups comple-
ment each other. For each two, three and four class combinations, the three
most successful combinations are reported in addition to the combination of
all feature groups. The experiment was conducted with the separate training
and test as well as with cross validation on the whole data set.

In comparison to using the groups individually, the performance mostly
improved when combining two or three feature groups . However, for four
groups and when using all features, the performance of the classifiers dropped
considerably below the performance of the best individual group. This sug-
gests that too much useless features accumulated, which can have a negative
effect on the models’ predictive power.

The best combination of feature groups with cross validation as evaluation
was LEX_LM_MORPH. When using holdout estimation, the LEX_MORPH
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CV on all data

Name Accuracy | F-Measure
SYN_LEX 69.7 67.3
LEX_MORPH 69.4 69.1
LEX_LM 69.1 68.0
LEX_LM_MORPH 70.1 69.9
SYN_LEX LM 69.9 66.9
SYN_LEX MORPH 68.5 67.9
SYN_LEX_ LM_MORPH 68.9 68.6
LEX_LM_MORPH_TEN 68.8 68.3
SYN_LEX_LM_TEN 65.5 64.0
ALL 64.5 64.0

Table 26: Three best performing two, three and four class combinations and
the performance of all features (CV).

Holdout

Name Accuracy | F-Measure
LEX_MORPH 61.1 60.8
LEX_TEN 59.8 59.3
LEX_ LM 59.4 59.0
LEX_ LM _MORPH 61.1 60.58
SYN_LEX_ MORPH 58.5 58.0
LEX_LM_TEN 57.8 57.6
SYN_LEX LM _MORPH 58.8 58.4
SYN_LEX_LM_PR 57.8 57.3
LEX_LM_MORPH_TEN o7.8 57.2
ALL 57.2 56.4

Table 27: Three best performing two, three and four class combinations and
the performance of all features (holdout).

and LEX_LM_MORPH were equal in accuracy. It is interesting to see that the
different methods for model training and testing produced different rankings.
Investigating the reasons for these discrepancies would be very interesting,
but has to be deferred to future work.

In addition to the classification experiments, we examined the intercorre-
lations of individual features, mainly to detect high intercorrelations across
groups. Notably, Average Number of Verbs per Sentence from the mor-
phological group correlated highly with several syntactic features, for in-
stance Average Sentence Length (r = 0.91) and Average Longest Depen-
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dency per Sentence (r = 0.86). Furthermore there was a high correlation
between Participle-Verb Ratio and Passive Voice per Clause (r = 0.86). Un-
surprisingly there were high intercorrelations between some elements of the
syntactic and parse rule group, for example Average VZ Frequency and the
corresponding parser tag VZ PTKZU VVINF (r = 0.89). Many high inter-
correlations also occurred between features of the tense and the parse rule
group.

From the declining results for combinations of more than three groups it
can be concluded that these combinations have potential but that too much
noise disturbs the SMO. Feature selection can be applied to find a good
combination of features. For future work it might be interesting to train an
ensemble classifier instead of combining feature groups.

6.6 Feature Selection

As the previous section has illustrated, using all available features together
in one model does not result in the best classifier. Irrelevant features have a
negative impact on most machine learning algorithms, slow them down and
make the resulting models harder to interpret. It is therefore a common prac-
tice to perform attribute selection before classification (Witten and Frank,
2005). We used the WEKA implementation of correlation based feature se-
lection (CfsSubsetEval). This method is independent of the machine learning
algorithm used. It evaluates the merit of each feature in terms of correlation
with the class but also takes redundancy among the features into account.
Features that correlate highest with the class but have a low intercorrelation
are preferred (Witten and Frank, 2005).

CV on Training Set Holdout
Name # | Accuracy | F-Measure || Accuracy | F-Measure
LEX_LM_MORPH 30 71.2 70.7 61.7 61.3
SYN_LEX_LM_MORPH | 34 72.5 72.4 62.7 62.2
ALL 88 71.6 71.2 61.8 60.7

Table 28: Results after Feature Selection with CfsSubset Evaluation

We applied feature selection to the most successful combinations of three
and four feature groups and to the whole feature set. Since CfsSubsetEval
uses the whole training set for feature selection we conducted the following
experiment on the separate training and test set only. Since the test set
should not be used for judging the success of feature selection, the results
are shown for 10 fold cross validation on the training set. Choosing a feature
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set should based on these results only. However, since this is experimental
work, we also show the results on the heldout test set to be able to compare
their performance to their non feature-selected counterparts.

Interpretation Features

Length / sophistication of | Avg. Sentence Length, Avg. Length of a

production units T-Unit

Embedding Dep. Clauses with Conj. to dep. Clause
Ratio, Avg. Num. Non-Terminal Per
Words

Verb phrase complexity Avg. Num. VZs per Sentence, Avg.
Length of a VP

Coordination Avg. Num. Co-ordinate Phrases per Sen-
tence

Use of passive voice Passive Voice - Sentence Ratio

Script length Text Length

Lexical richness Type-Token Ratio, Root Type-Token Ra-
tio, Corrected Type-Token Ratio, HDD,
MTLD

Lexical richness w. respect to | Squared Verb Variation 1, Corrected Verb

verbs Variation 1

Nominal style Noun Token Ratio

Word length / difficulty Avg. Num. Syllables per Word, Avg.

Num. Characters per Word
Frequency of the words used | Annotated Type Ratio, Ratio of Words In
in the script / Vocabulary | Log Frequency Band Two, Ratio of Words

Ease In Log Frequency Band Four, Unigram
Plain Easy
Spelling errors Ratio of Lex. Types not in Dlex, Google

Spell Check Error Rate

Nominalization, use of deriva- | keit, ung, werk, Derived Nouns To Nouns
tional suffixes, use of words | Ratio

with Germanic stems

Nominal case Genetive-Noun Ratio, Nominative-Noun
Ratio
Verbal mood and person Subjunctive-Verb Ratio , Second Person-

Verb Ratio , Third Person-Verb Ratio

Table 29: The 34 features constituting the best performing model after fea-
ture selection.

The results showed that feature selection improved all three models. Gen-
erally it can be observed that with feature selection the performance of the
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models became more similar. Their accuracies varied less than 1 %, while the
difference between the best and the worst of the models before feature selec-
tion was 3.9 %. This suggests that feature selection indeed made the models
more robust. With feature selection SYN_.LEX_LM_MORPH (Best34) is
the best performing model instead of LEX_LM_MORPH (Best30). The sec-
ond best model consists of the 88 features selected from the whole dataset
(Best88).

Table 29 shows all features in Best34. They were summarized into groups
according to their possible interpretation. It can be observed that although
CfsSubsetEval prefers features with a low intercorrelation, it still keeps in-
tercorrelating features to a certain extent if their predictive power is con-
vincing. Selected features with a highly intercorrelation were for example
Squared Verb Variation and Corrected Verb Variation (r = 0.97) or Average
Number of Characters per Word and Average Number of Syllables per Word
(r =0.94).

Best3} comprises 7 syntactic, 16 lexical, 1 language model and 9 mor-
phological features. It is remarkable that most linguistic aspects, that were
encoded in the model previous to feature selection, are represented in Best3/.
It has already been mentioned that text length has a high correlation with
proficiency level. Consequently it was among the selected features. Vocabu-
lary difficulty and lexical richness also seemed to be particularly indicative.
They are represented by shallow features like the Average Number of Char-
acters per Word but also by the general frequency of the vocabulary used in
the essays as measured by dlexDB scores and by the Easy Plain Unigram lan-
guage model. Additionally several Type-Token Ratio variations, that mea-
sure lexical richness, were selected, as well as lexical variation measures and
Noun-Token Ratio. Notably also both features that measure spelling errors
were among the best 34 features.

On the syntactic level shallow indicators such as Average Sentence Length
were included as well as parse tree based measures of embedding and coor-
dination, and the use of passive voice. From the morphological group, fea-
tures that encode verbal mood and person, nominal declension and nominal
suffixes were added. Finally it can be seen that none of the lexical related-
ness measures or morphological noun compounding features were present in
Best34, nor in fact Best30 or Best88. It can be concluded that they are not
particularly predictive of proficiency level.

To check if the model had become more stable after feature selection,
we trained and tested a model based on Best3/ with cross validation on
the whole data set, and examined the accuracies of each fold separately.
Compared to the 10.7 % difference between the highest and lowest accuracy
for a fold in the initial model (see section 6.2), the different between the
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highest and lowest result was reduced to 8.56 %. This indicates that Best34
is more robust.

The experiments showed that feature selection with CfsSubsetFval im-
proved the classification results and lead to a feature set that encodes profi-
ciency at different, conceptually satisfactory levels. Additionally the model
became more robust. Therefore we conclude that applying feature selection
with CfsSubsetFEval for model optimization is a recommendable step.

6.7 Pass or Fail Classification for Each Exam Type
Separately

In a real world scenario users might not want to consider all essays regardless
of their exam type. They might want to know which people passed or failed a
particular exam. Imagine a group of students had just finished an A2 exam.
A student passes the exam if the essay is assigned at least the rating level
that equals the exam type. As an example, if a student took an A2 exam,
and was graded as A2 or above, she would have passed the exam. If she
was graded as Al she would have failed. While a user could still successfully
use the classifier that we built in the previous sections to obtain the CEFR
levels, and then decide who passed and failed, we also examined binary “pass
or fail” classification for each exam type separately. The performance might
be better as the classifier can be attuned specifically to a pass of fail scenario.
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Figure 12: Distribution of classes for each exam level.
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Figure 12 shows, that the class (essay rating level) distributions over each
individual exam type are very unequal. Distributions, that are enormously
skewed and offer very little samples for some classes, have an negative impact
on machine learning algorithms. As most algorithms optimize the overall
cost, for a distribution like 7 fail - 200 pass most algorithms would almost
certainly learn a majority classifier (classify all examples as pass). Cost sen-
sitive learning can be used to compensate an uneven distribution, or to take
into account that misclassifying one class can be more expensive or problem-
atic than the other. Usually all types of errors have the same cost. Giving
different weights to instances of different classes can be used to make some
classification errors more expensive than others (Harrington, 2012; Witten
and Frank, 2005). While adjusting the weights is relatively straightforward
for a two class problem, it is much more complicated when multiple classes
are involved. Also, it has been noticed that the same methods, that work
well for two class problems, do often not perform as expected for multiclass
problems (Abe et al., 2004). For more detailed information on cost sensi-
tive classification in general see Ling and Sheng (2010). For a discussion of
applying it to multiclass problems see Abe et al. (2004).

For cost sensitive classification we used WEKA’s meta classifier CostSen-
sitiveClassifier with SMO as a base classifier and the option for re-weighting
training instances according to the cost matrix. This implementation uses
bagging to make the base classifier cost sensitive (Witten and Frank, 2005,
319-320) and is based on the approach described in Domingos (1999). All
experiments were conducted with the Best3/ feature set. Because there were
only about 200 samples per exam type, we chose leave-one-out for building
and evaluating the classifiers. C'VParameterSelection with 10 folds was used
for selecting SMQO’s C parameter. In addition to accuracy, we report precision
and recall per class.

The numbers in Table 30 show the results of experimenting with cost
sensitive learning. As the exact costs are not known to us, we aimed at
balancing the uneven distributions. The weights that we chose were guided
by the class distributions. In a real world scenario statistics about the fail
rate of an exam or expert knowledge might be used instead. It can be seen
that the accuracies, and the precision values for the minority classes dropped
when the costs were adjusted, but the precision values for the majority classes
increased. Most importantly, the recall values for the minority classes im-
proved. The experiment with A2 (Table 31) shows a classifier that was not
designed to merely balance the distribution, but to prioritize the detection
of “fail” cases. Therefore the cost for misclassifying “fail” as “pass” was set
to twice the number of instances in the majority class.

We conclude, that for two class problems, cost sensitive learning provides
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Name Accuracy | Precision | Recall || Cost-Matrix
B1 fail 82.8 75.6 54.4

B1 pass 82.8 84.6 93.5

Bl-c fail 74.3 51.9 73.7 |03

Bl-c pass 74.3 88.4 74.5 10
B2 fail 77.9 68.8 52.4

B2 pass 77.9 80.8 89.4

B2-c fail 73.5 55.2 76.2 || 0153

B2-c pass 73.5 87.2 72.3 || 570
C1 fail 68.7 73.7 79.5

C1 pass 68.7 57.4 49.3

Cl-c fail 67.7 77.9 69.3 || 071

Cl-c pass 67.7 54.1 67.7 1270

Table 30: Balancing skewed distributions with cost sensitive learning.

Name Accuracy | Precision | Recall || Cost-Matrix
A2 fail 96.6 0 0

A2 pass 96.6 96.6 1

A2-c fail 85.1 14.7 71.4 | 0400

A2-c pass 85.1 98.9 85.6 || 10

Table 31: Training a classifier that gives a higher priority to detecting “fail”
cases.

an interesting opportunity to balance skewed data sets and influence the
classification in favour of a particular class. How exactly this device should be
used in automatic language proficiency assessment depends on the situation
and has to be decided individually.

6.8 Classification with Rasch Corrected Scores

In addition to the actual ratings assigned by human annotators, the MERLIN
project also offered a corrected version of the ratings. Multifaceted RASCH
analysis was used to model effects that are associated with the properties
of individual raters and generate the corrected scores (Bérenfanger, 2012).
Classification is expected to work better with the RASCH corrected scores,
since they are supposed to be more consistent (Briscoe et al., 2010). For
comparison’s sake we trained a classifier with all features on the whole data
set using 10 fold cross validation. With an accuracy of 67.9 % and F-measure
of 66.7 % the classifier built on the corrected data indeed performed better
than the model previously built under the same conditions on the actual
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human ratings (64.5 % accuracy, 64.0 % F-Measure). This result indicates,
that some classification errors in our approach can be attributed to the in-
consistencies of the human ratings. A more detailed analyses, that would
include the manual inspection of some essays, could be enlightening.

6.9 Predicting the Exam Type

In this experiment we built a classifier for predicting the exam type instead
of the essay rating level. There are several reasons why this is interesting. In
section 6.1 we mentioned that the exam type might have an influence on the
CEFR levels assigned by the human raters. Raters might form expectations
about the essays at certain exam types, that might influence the ratings. All
other considerations set aside, it is common that most people that take a
test for a certain level, also achieved this level - more people pass an exam
than fail it.

The experiment was conducted with 10 fold cross validation on the whole
data set and with all features. The resulting classifier predicted the exam
type with an accuracy of 88.9 % and an F-measure of 88 %. This indicates
that our feature set can more accurately predict the exam type than the
essay rating level. It cannot be concluded from this experiment however, as
the conditions are not equal. For instance, the class distribution is different.
While the exam type classifier has an equal amount of data for each class,
the essay rating level classifier was trained on a skewed data set, which could
be one reason that the essay rating level classifier performed worse. We leave
the investigation of the exact reasons for future work.

7 Conclusion

During the initial phase of this work, we explored the MERLIN data set and
identified some interesting characteristics and challenges, in particular the
high amount of spelling errors and frequently spurious punctuation. We ad-
dressed the spelling errors by integrating Google Spell Check into our prepro-
cessing pipeline. We surveyed methods for sentence boundary detection that,
unlike conventional tools, do not mainly rely on punctuation. Finally we im-
plemented a tool for automatically identifying missing sentence boundaries.
Although the results seemed promising, the tool was not reliable enough to
use it in this work.

We learned that the texts in the MERLIN corpus vary immensely in
length between the CEFR levels (exam types as well as essay rating levels).
There are roughly the same number of texts for each of the CEFR exam types
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A1-C1, but not for the actual CEFR levels assigned by the human raters. As
the ratings represent the actual proficiency, the data set for our proficiency
classifier did not have an even class distribution.

We implemented a wide range of theory driven lexical, syntactic and
morphological features as well as data driven tense and parse rule features.
They were mainly inspired by previous research on proficiency assessment,
essay grading, readability classification and SLA studies. This resulted in a
feature set of more than 3000 features.

We addressed proficiency assessment as a classification problem, using
each of the five essay rating levels as one class. SMO was chosen for building
our classifiers. We trained one classifier for each feature group to find the
most predictive group. The lexical classifier performed best (holdout 60.5 %,
CV 68.7 % accuracy), followed by the morphological and syntactic classifiers.
The language model, tense and parse rule features performed rather poorly.
However, the tense and parse rule features achieved much better results when
represented as binary instead of frequency weighted vectors (+18 % and +7
% accuracy respectively).

When combining several feature groups we found out that combinations
of two or three groups mostly performed better than one group alone. Par-
ticularly, the lexical and morphological group (holdout 61.1 %, CV 69.4 %
accuracy) seemed to complement to each other. The best three class com-
bination consisted of the lexical, morphological and language model groups
(holdout 61.1 %, CV 70.1 % accuracy). When combining more than three
groups, the classifiers’ performances dropped. We attribute this to the ac-
cumulation of too many redundant features. A supplementary statistical
analysis showed that particularly in the data driven classes there are many
features with a correlation below 0.1. On the other hand there were hardly
any high (r > 0.7) intercorrelations between features belonging to different
groups.

We applied correlation based feature selection on the best combinations
of three and four feature groups and on the whole feature set. The best model
(holdout 62.7 %, CV on training set 72.5 % accuracy) contained 34 features
from the syntactic, lexical, language model and morphological groups. In-
terpreting the model showed that it contained most of the linguistic aspects
that are encoded in our entire feature set.

We experimented with a two class “pass or fail” scenario for each of
the exam types. For most exam types there were significantly more “pass”
than “fail” samples. We showed that cost sensitive learning can be used to
simulate a more equal class distribution or to give more priority to detecting
the “fail” class.

Additional experiments showed that our classifier performed better when
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using RASCH corrected scores for training and testing (67.9 % compared to
64.5 % accuracy). This implies that some of the classifier errors might be
due to inconsistent human ratings in the original data set. Finally we used
our feature set to train a classifier for predicting the exam type. Strikingly,
it performed better than our proficiency classifier (88.9 % compared to 64.5
% accuracy). The implications of this could not be examined further in the
course of this work, but will be an interesting topic for further research.

In summary it can be said that we gained interesting insights not only into
the performance of particular features, but also into the issues associated with
the task and the data set. As this was a first attempt at language proficiency
classification for German there is no previous work that we could directly
compare our work to. However, the performance of our classifiers seemed
promising.

8 Perspectives for Future Work

We conducted a wide range of experiments and many of our results led to
new questions. With respect to machine learning it would be interesting
to investigate, why different combinations of feature groups performed best
in the holdout and in the cross validation scenario. It was mentioned in
section 6.4 that some features might encode text length rather than language
proficiency. For clarification, the experiments in this work should be repeated
with samples that are controlled for text length. It is also worth investigating
why our feature set seemed to be more useful for detecting the exam type
than the essay rating level.

If the system was going to be used in a real life scenario, it would be
necessary to test its robustness against score manipulation by students who
figured out the criteria on which the essay ratings are assigned. However,
since the number of our criteria is rather large, we think that tricking the
system would be hard.

Furthermore, it would be desirable to experiment with different ways of
handling the uneven class distribution in the multiclass scenario. Also, more
sophisticated machine learning techniques such as ensemble classifier should
be employed. For example, if one classifier was built for each group of features
and then combined into an ensemble, the tense and parse rule groups could
be used as binary features.

In addition to more machine learning experiments a thorough statistical
analysis would help to arrive at a better understanding of the data set and
might reveal the influence of exam type, L1 background or effect of different
tasks on the essay rating level.
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Finally the tool for missing sentence boundary detection could be further
developed.
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